Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4147-4160    DOI: 10.1016/j.jia.2024.04.003
Special Issue: 昆虫生理与发育Insect physiology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Neuropeptide signaling systems are involved in regulating thermal tolerance in the oriental fruit fly

Yang Yang1, 2*, Hongfei Li1, 2*, Changhao Liang1, 2, Donghai He1, 2, Hang Zhao1, 2, Hongbo Jiang1, 2#, Jinjun Wang1, 2#

1 Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China

2 Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
神经肽及其受体参与昆虫各种生理过程的调节。虽然神经肽在重要的农业害虫-东方果实蝇(Bactrocera dorsalis,桔小实蝇)中已被鉴定,但其相应的受体仍然未知。目前尚不清楚神经肽信号系统是否参与调节这种害虫的温度耐受性。本文系统鉴定了44个候选的神经肽受体基因(编码66个蛋白序列),分析了桔小实蝇中神经肽配体及其受体基因的时空表达模式,也分析了它们在两个温度驯化种群中的表达情况。结果显示,在驯化过程中,许多神经肽和受体基因参与了对温度胁迫的响应。特别是短神经肽F(sNPF)的表达量在耐高温种群中显著上调。此外,蛋白质组学数据显示,sNPF在两个温度驯化种群中均上调。基于CRISPR/Cas9的功能验证结果表明,sNPF参与了桔小实蝇对温度耐受性的调节。本研究结果丰富了昆虫神经肽sNPF的功能。此外,该研究完善了桔小实蝇神经肽信号系统以及它们在温度适应性中的作用,有助于更好的解释其在世界各地的快速入侵。


Abstract  
Neuropeptides and their receptors are involved in the regulation and coordination of various physiological processes in insects.  Although various neuropeptides have been identified previously, the corresponding receptors remain unknown in the oriental fruit fly, Bactrocera dorsalis, an important agricultural insect pest.  It is also unclear whether neuropeptide signaling systems are involved in regulating the thermal tolerance of this notorious pest.  Here, we systematically identified 44 putative neuropeptide receptor genes which encode 66 protein sequences, and analyzed the spatio-temporal expression patterns of the neuropeptide ligands and their receptor genes in Bdorsalis.  We also analyzed changes in their transcript accumulation in two thermo-tolerant populations (heat and cold) of Bdorsalis.  The results showed that numerous neuropeptides and receptors participate in responding to thermal stresses during acclimation.  In particular, the expression of short neuropeptide F (sNPF) was up-regulated in the heat-tolerant population of Bdorsalis.  Moreover, proteomic data showed that sNPF was up-regulated in both thermo-tolerant populations of Bdorsalis.  The functional verification based on CRISPR/Cas9 demonstrated that sNPF is involved in regulating the tolerance to thermal stresses.  The results of this study enrich our knowledge on the function of neuropeptide sNPF in insects.  Moreover, this study demonstrated the role of neuropeptide signaling systems in thermal adaptation, contributing to a better understanding of the rapid invasiveness of Bdorsalis around the world.


Keywords:  Bactrocera dorsalis       neuropeptide receptors       sNPF       thermal adaptation       CRISPR/Cas9  
Received: 08 December 2023   Accepted: 04 March 2024
Fund: 
This study was supported by funding from the National Natural Science Foundation of China (U21A20222 and 32072491), the National Key R&D Program of China (2022YFC2601000), the 111 Project, China (B18044) and the earmarked fund for China Agriculture Research System (CARS-26).
About author:  #Correspondence Hongbo Jiang, E-mail: jhb8342@swu.edu.cn; Jinjun Wang, E-mail: wangjinjun@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Yang Yang, Hongfei Li, Changhao Liang, Donghai He, Hang Zhao, Hongbo Jiang, Jinjun Wang. 2024. Neuropeptide signaling systems are involved in regulating thermal tolerance in the oriental fruit fly. Journal of Integrative Agriculture, 23(12): 4147-4160.

Andersen M K, Macmillan H A, Donini A, Overgaar J. 2017. Cold tolerance of Drosophila species is tightly linked to the epithelial K+ transport capacity of the Malpighian tubules and rectal pads. Journal of Experimental Biology220, 4261–4269.

Bubliy O A, Kristensen T N, Kellermann V, Loeschcke V. 2012. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogasterFunctional Ecology26, 245–253.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. Tbtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Choi H Y, Saha S K, Kim K, Kim S, Yang G M, Kim B, Kim J H, Cho S G. 2015. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells. BMB Reports48, 68–80.

Choi S, Lim D S, Chung J. 2015. Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate lipid metabolism in DrosophilaPLoS Genetics11, e1005263.

Clarke A R, Armstrong K F, Carmichael A E, Milne J R, Raghu S, Roderick G K, Yeates D K. 2005. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The Bactrocera dorsalis complex of fruit flies. Annual Review of Entomology50, 293–319.

Clemson A S, Sgro C M, Telonis-Scott M. 2018. Transcriptional profiles of plasticity for desiccation stress in DrosophilaComparative Biochemistry and Physiology (Part B), 216, 1–9.

Darlison M G, Richter D. 1999. Multiple genes for neuropeptides and their receptors: Co-evolution and physiology. Trends in Neurosciences22, 81–88.

Dou W, Tian Y, Liu H, Shi Y, Smagghe G, Wang J J. 2017. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth. Comparative Biochemistry and Physiology (Part B), 213, 8–16.

Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. 2019. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Frontiers in Endocrinology10, 1–17.

Galikova M, Dircksen H, Nassel D R. 2018. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in DrosophilaPLoS Genetics14, e1007618.

Gao H, Li Y X, Wang M, Song X W, Tang J, Feng F, Li B. 2021. Identification and expression analysis of G protein-coupled receptors in the Miridae insect Apolygus lucorumFrontiers in Endocrinology12, 773669.

Gao H, Li Y X, Zhang H, Wang S S, Feng F, Tang J, Li B. 2022. Comparative study of neuropeptide signaling systems in Hemiptera. Insect Science3, 705–724.

Goda T, Tang X, Umezaki Y, Chu M L, Kunst M, Nitabach M N N, Hamada F N. 2016. Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference. The Journal of Neuroscience36, 11739–11754.

Gui S H, Jiang H B, Smagghe G, Wang J J. 2017. The neuropeptides and protein hormones of the agricultural pest fruit fly Bactrocera dorsalis: What do we learn from the genome sequencing and tissue-specific transcriptomes? Peptides98, 29–34.

He Q K, Du J, Wei L Y, Zhao Z W. 2020. AKH-FOXO pathway regulates starvation-induced sleep loss through remodeling of the small ventral lateral neuron dorsal projections. PLoS Genetics16, e1009181.

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. 2007. QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology8, R19.

Jiang H B, Gui S H, Xu L, Pei Y X, Smagghe G, Wang J J. 2017. The short neuropeptide F modulates olfactory sensitivity of Bactrocera dorsalis upon starvation. Journal of Insect Physiology99, 78–85.

Jiang H B, Lkhagva A, Daubnerova I, Chae H S, Simo L, Jung S H, Yoon Y K, Lee N R, Seong J Y, Zitnan D, Park Y. 2013. Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. Proceedings of the National Academy of Sciences of the United States of America110, E3526–E3534.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Kong X, Li Z X, Gao Y Q, Liu F H, Chen Z Z, Tian H G, Liu T X, Xu Y Y, Kang Z W. 2021. Genome-wide identification of neuropeptides and their receptors in an aphid endoparasitoid wasp, Aphidius gifuensiInsects12, 1–15.

Kumar D, Bansal G, Narang A, Basak T, Abbas T, Dash D. 2016. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics16, 2533–2544.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Letunic I, Bork P. 2021. Interactive tree of life (Itol) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research49, W293-W296.

Li H F, Huang X Y, Yang Y H, Chen X F, Yang Y, Wang J J, Jiang H B. 2022. The short neuropeptide F receptor regulates olfaction-mediated foraging behavior in the oriental fruit fly Bactrocera dorsalis (Hendel). Insect Biochemistry and Molecular Biology140, 103697.

Li H M, Luo X, Li N, Liu T, Zhang J Z. 2023. Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Frontiers in Cell and Developmental Biology11, 1103923.

Li J J, Shi Y, Lin G L, Yang C H, Liu T X. 2021. Genome-wide identification of neuropeptides and their receptor genes in Bemisia tabaci and their transcript accumulation change in response to temperature stresses. Insect Science28, 35–46.

Li M Y, Tu X H, Cao Y, Li S G, Liu S. 2021. Characterisation of a copper/zinc superoxide dismutase from Pieris rapae and its role in protecting against oxidative stress induced by chlorantraniliprole. Pesticide Biochemistry and Physiology174,104825.

Li X, Du L, Jiang X J, Ju Q, Qu C J, Qu M J, Liu T X. 2020. Identification and characterization of neuropeptides and their G protein-coupled receptors (GPCRs) in the cowpea aphid Aphis craccivoraFrontiers in Endocrinology11, 640.

Li Y X, Gao H, Yu R N, Zhang Y L, Feng F, Tang J, Li B. 2022. Identification and characterization of G protein-coupled receptors in Spodoptera frugiperda (Insecta: Lepidoptera). General and Comparative Endocrinology317, 113976.

Liang P, Ning J, Wang W L, Zhu P, Gui L Y, Xie W, Zhang Y J. 2022. Catalase promotes whitefly adaptation to high temperature by eliminating reactive oxygen species. Insect Science30, 1293–1308.

Liu H, Zhang D J, Xu Y J, Wang L, Cheng D F, Qi Y X, Zeng L, Lu Y Y. 2019. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. Journal of Integrative Agriculture18, 771–787.

Liu S H, Xia Y D, Zhang Q, Li W, Li R Y, Liu Y, Chen E H, Dou W, Stelinski L L, Wang J J. 2020. Potential targets for controlling Bactrocera dorsalis using cuticle- and hormone-related genes revealed by a developmental transcriptome analysis. Pest Management Science76, 2127–2143.

Liu Y, Liu H W, Wang H C, Huang T Y, Liu B, Yang B, Yin L J, Li B, Zhang Y, Zhang S, Jiang F, Zhang X X, Ren Y W, Wang B, Wang S, Lu Y H, Wu K M, Fan W, Wang G R. 2021. Apolygus lucorum genome provides insights into omnivorousness and mesophyll feeding. Molecular Ecology Resources21, 287–300.

Lubawy J, Urbanski A, Colinet H, Pfluger H J, Marciniak P. 2020. Role of the insect neuroendocrine system in the response to cold stress. Frontiers in Physiology11, 376.

MacMillan H A, Nazal B, Wali S, Yerushalmi G Y, Misyura L, Donini A, Paluzzi J P. 2018. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. Journal of Experimental Biology221, 1–12.

Marais E, Terblanche J S, Chown S L. 2009. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology55, 336–343.

Meiselman M R, Alpert M H, Cui X Y, Shea J, Gregg I, Gallio M, Yapici N. 2022. Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Current Biology32, 1362–1375.

Mutamiswa R, Tarusikirwa V, Nyamukondiwa C, Chidawanyika F. 2020. Fluctuating environments impact thermal tolerance in an invasive insect species Bactrocera dorsalis (Diptera: Tephritidae). Journal of Applied Entomology144, 885–896.

Nassel D R, Zandawala M. 2019. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Progress in Neurobiology179, 1–79.

Pieterse W, Terblanche J S, Addison P. 2017. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)? Journal of Insect Physiology98, 1–6.

Schoofs L, De Loof A, Van Hiel M B. 2017. Neuropeptides as regulators of behavior ininsects. Annual Review of Entomology62, 35–52.

Shi Y, Jiang H B, Gui S H, Liu X Q, Pei Y X, Xu L, Smagghe G, Wang J J. 2017. Ecdysis triggering hormone signaling (ETH/ETHR-A) is required for the larva-larva ecdysis in Bactrocera dorsalis (Diptera: Tephritidae). Frontiers in Physiology8, 587.

Shi Y, Liu T Y, Jiang H B, Liu X Q, Dou W, Park Y, Smagghe G, Wang J J. 2019. The ecdysis triggering hormone system, via ETH/ETHR-B, is essential for successful reproduction of a major pest insect, Bactrocera dorsalis (Hendel). Frontiers in Physiology10, 151.

Sgro C M, Terblanche J S, Hoffmann A A. 2016. What can plasticity contribute to insect responses to climate change? Annual Review of Entomology61, 433–451.

Shen G M, Jiang H B, Wang X N, Wang J J. 2010. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Molecular Biology11, 1–10.

Sinclair B J, Gibbs A G, Roberts S P. 2007. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogasterInsect Molecular Biology16, 435–443.

Stephens A E, Kriticos D J, Leriche A. 2007. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin of Entomological Research97, 369–378.

Tang B J, Cheng Y B, Li Y M, Li W R, Ma Y, Zhou Q, Lu K. 2020. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugensChemosphere259, 1–12.

Terhzaz S, Alford L, Yeoh J G, Marley R, Dornan A J, Dow J A, Davies S A. 2017. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukiiPest Management Science74, 800–810.

Terhzaz S, Teets N M, Cabrero P, Henderson L, Ritchie M G, Nachman R J, Dow J A, Denlinger D L, Davies S A. 2015. Insect capa neuropeptides impact desiccation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America112, 2882–2887.

Veenstra J A. 2014. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Frontiers in Physiology5, 1–22.

Veenstra J A. 2016. Similarities between decapod and insect neuropeptidomes. PeerJ4, e2043.

Wang J J, Wei D, Dou W, Hu F, Liu W F, Wang J J. 2013. Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera: Tephritidae). Journal of Economic Entomology106, 970–978.

Wei D, Li H M, Yang W J, Wei D D, Dou W, Huang Y, Wang J J. 2015. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalisInsect Molecular Biology24, 41–57.

Wei D D, He W, Lang N, Miao Z Q, Xiao L F, Dou W, Wang J J. 2019. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. Archives of Insect Biochemistry and Physiology102, e21601.

Xue W H, Xu N, Chen S J, Liu X Y, Zhang J L, Xu H J. 2021. Neofunctionalization of a second insulin receptor gene in the wing-dimorphic planthopper, Nilaparvata lugensPLoS Genetics17, e1009653.

Yamanaka N, Hua Y J, Mizoguchi A, Watanabe K, Niwa R, Tanaka Y, Kataoka H. 2005. Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx moriJournal of Biological Chemistry280, 14684–14690.

Yamanaka N, Zitnan D, Kim Y J, Adams M E, Hua Y J, Suzuki Y, Suzuki A, Satake H, Mizoguchi A, Asaoka K, Tanaka Y, Kataoka H. 2006. Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proceedings of the National Academy of Sciences of the United States of America103, 8622–8627.

Yang Y, Jiang H B, Liang C H, Ma Y P, Dou W, Wang J J. 2023. Chromosome-level genome assembly reveals potential epigenetic mechanisms of the thermal tolerance in the oriental fruit fly, Bactrocera dorsalisInternational Journal of Biological Macromolecules225, 430–441.

Zandawala M, Nguyen T, Balanya S M, Johard H A D, Amcoff M, Wegener C, Paluzzi J P, Nassel D R. 2021. A neuroendocrine pathway modulating osmotic stress in DrosophilaPLoS Genetics17, e1009425.

Zhang H, Bai J, Huang S N, Liu H H, Lin J T, Hou Y M. 2020. Neuropeptides, G-protein coupled receptors (GPCRs) in the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Frontiers in Physiology11, 1–16.

Zhang S Z, Fu W Y, Li N, Zhang F, Liu T X. 2015. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. Journal of Insect Physiology73, 47–52.

Zhang Y, Liu S L, De Meyer M, Liao Z X, Zhao Y, Virgilio M, Feng S Q, Qin Y J, Singh S, Wee S L, Jiang F, Guo S K, Li H, Deschepper P, Vanbergen S, Delatte H, van Sauers-Muller A, Syamsudin T S, Kawi A P, et al. 2022. Genomes of the cosmopolitan fruit pest Bactrocera dorsalis (Diptera: Tephritidae) reveal its global invasion history and thermal adaptation. Journal of Advanced Research53, 61–74.

[1] Shanyu Li, Guifang Lin, Haoqi Wen, Haiyan Lu, Anyuan Yin, Chanqin Zheng, Feifei Li, Qingxuan Qiao, Lu Jiao, Ling Lin, Yi Yan, Xiujuan Xiang, Huang Liao, Huiting Feng, Yussuf Mohamed Salum, Minsheng You, Wei Chen, Weiyi He. Knock-in of exogenous sequences based on CRISPR/Cas9 targeting autosomal genes and sex chromosomes in the diamondback moth, Plutella xylostella[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3089-3103.
[2] Jun Lü, Jingxiang Chen, Yutao Hu , Lin Chen, Shihui Li, Yibing Zhang, Wenqing Zhang.

CRISPR/Cas9-mediated NlInR2 mutants: Analyses of residual mRNA and truncated proteins [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2006-2017.

[3] Jiali Ying, Yan Wang, Liang Xu, Tiaojiao Qin, Kai Xia, Peng Zhang, Yinbo Ma, Keyun Zhang, Lun Wang, Junhui Dong, Lianxue Fan, Yuelin Zhu, Liwang Liu.

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1557-1567.

[4] Wei Zhang, Shaoyang Li, Rong Li, Jinzhi Niu, Jinjun Wang. Characterization of Domeless receptors and the role of BdDomeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis[J]. >Journal of Integrative Agriculture, 2024, 23(4): 1274-1284.
[5] Jinxin Yu, Yanmin Hui, Jiayi He, Yinghao Yu, Zhengbing Wang, Siquan Ling, Wei Wang, Xinnian Zeng, Jiali Liu.

The role of cAMP-dependent protein kinase A in the formation of long-term memory in Bactrocera dorsalis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 605-620.

[6] Wei Huang, Ruyu Jiao, Hongtao Cheng, Shengli Cai, Jia Liu, Qiong Hu, Lili Liu, Bao Li, Tonghua Wang, Mei Li, Dawei Zhang, Mingli Yan.

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L. [J]. >Journal of Integrative Agriculture, 2024, 23(2): 724-730.

[7] CAO Song, SUN Dong-dong, LIU Yang, YANG Qing, WANG Gui-rong.

Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda [J]. >Journal of Integrative Agriculture, 2023, 22(7): 2162-2172.

[8] OUYANG Chun-zheng, YE Fan, WU Qing-jun, WANG Shao-li, Neil CRICKMORE, ZHOU Xu-guo, GUO Zhao-jiang, ZHANG You-jun. CRISPR/Cas9-based functional characterization of PxABCB1 reveals its roles in the resistance of Plutella xylostella (L.) to Cry1Ac, abamectin and emamectin benzoate[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3090-3102.
[9] JIANG Mao-cheng, HU Zi-xuan, WANG Ke-xin, YANG Tian-yu, LIN Miao, ZHAN Kang, ZHAO Guo-qi. CRISPR/Cas9-mediated knockout of SLC15A4 gene involved in the immune response in bovine rumen epithelial cells[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3148-3158.
[10] XIANG Guang-ming, ZHANG Xiu-ling, XU Chang-jiang, FAN Zi-yao, XU Kui, WANG Nan, WANG Yue, CHE Jing-jing, XU Song-song, MU Yu-lian, LI Kui, LIU Zhi-guo. The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome[J]. >Journal of Integrative Agriculture, 2023, 22(1): 202-213.
[11] JIN Ming-hui, TAO Jia-hui, LI Qi, CHENG Ying, SUN Xiao-xu, WU Kong-ming, XIAO Yu-tao . Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 815-820.
[12] ZHANG Ting-ting, WEN Ting-mei, YUE Yang, YAN Qiang, DU Er-xia, FAN San-hong, Siegfried ROTH, LI Sheng, ZHANG Jian-zhen, ZHANG Xue-yao, ZHANG Min. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2716-2726.
[13] CUI Hong-ying, ZHAO Zhang-wu. Structure and function of neuropeptide F in insects[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1429-1438.
[14] ZHANG Ru, ZHANG Zhong-jie, YU Ye, HUANG Yong-ping, QIAN Ai-rong, TAN An-jiang. Proboscipedia and Sex combs reduced are essential for embryonic labial palpus specification in Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1482-1491.
[15] DING Yi, ZHOU Shi-wei, DING Qiang, CAI Bei, ZHAO Xiao-e, ZHONG Shu, JIN Miao-han, WANG Xiao-long, MA Bao-hua, CHEN Yu-lin. The CRISPR/Cas9 induces large genomic fragment deletions of MSTN and phenotypic changes in sheep[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1065-1073.
No Suggested Reading articles found!