Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3803-3818    DOI: 10.1016/j.jia.2024.03.085
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties

Fei Bao1*, Ping Zhang1*, Qiying Yu2, Yunfei Cai2, Bin Chen1, Heping Tan1, Hailiang Han1, Junfeng Hou1, Fucheng Zhao1#

1 Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China

2 Zhejiang Provincial Seed Management Station, Hangzhou 310000, China

 Highlights 
Sweet maize yield relies more on kernel number, whereas waxy maize depends more on kernel weight under low nitrogen but on both traits under high nitrogen.
Greater plant or ear heights and optimal ear–plant height ratio may enhance sweet maize productivity by enlarging source size under low nitrogen conditions.
Reduced ear height and ear-plant ratio in waxy maize may promote kernel development through optimized assimilate partitioning under nitrogen limitation.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高效的氮肥管理对于提升作物产量、减轻环境负担以及推动农业可持续发展至关重要。然而,目前对于鲜食玉米生产中氮肥管理的研究尚显不足。因此,本研究深入分析了浙江省2015年至2019年间五个试验站点甜玉米(40个)和糯玉米(44个)氮肥施用量与产量之间的关系。根据施氮量的平均值,将其分为相对较高施氮量(甜玉米>300 kg ha-1,糯玉米>320 kg ha-1)和相对较低施氮量两个水平。研究发现,增加甜玉米和糯玉米的施氮量均显著降低氮肥偏生产力(R2=0.616P<0.01R2=0.643P<0.01)。这表明在本研究条件下,最佳施氮量可能接近于试验设定的最低值,即甜玉米为160 kg ha-1,糯玉米为180 kg ha-1对于甜玉米,在不同施氮水平下,相较于鲜千粒重,穗粒数对鲜籽粒产量的影响更为显著。而对于糯玉米,在相对较低施氮量下,鲜千粒重可能是提升鲜籽粒产量的关键因素;而在相对较高施氮量下,穗粒数和鲜千粒重则共同影响产量。此外,在相对较低施氮量下,甜玉米可能需要较高的株高和穗位高以及优化的穗高系数,以促进干物质积累,进而增加鲜籽粒产量。相比之下,糯玉米在相对较低施氮量下可能需要较低的穗位,以缩短源库之间的距离,使光合产物能够更高效地输送到穗部,从而增加产量。



Abstract  

Efficient nitrogen management is crucial for developing sustainable strategies aimed at enhancing yield while mitigating negative environmental impacts.  However, research focusing on this aspect in the production of fresh maize is limited.  Therefore, this study analyzed the effects of nitrogen application rates on the yields of 40 sweet and 44 waxy maize varieties at five sites in Zhejiang Province, China, from 2015 to 2019.  The nitrogen application rates were categorized as either relatively high (RHN, >300 kg ha–1 for sweet maize and >320 kg ha–1 for waxy maize) or relatively low (RLN).  An increase in nitrogen application rates significantly reduced nitrogen fertilizer partial productivity in both sweet and waxy maize (R2=0.616, P<0.01; R2=0.643, P<0.01), indicating that the optimum nitrogen application rates in this study might be the lowest values (160 kg ha–1 for sweet maize and 180 kg ha–1 for waxy maize).  The kernel number per ear of sweet maize had a potentially more significant impact on fresh grain yield than the 1,000-fresh kernel weight under both RLN and RHN.  In waxy maize, 1,000-kernel weight contributed more to fresh grain yield under RLN, while kernel number per ear and 1,000-kernel weight cooperatively affected the yield under RHN.  This study found that sweet maize required taller plant and ear heights, along with an optimal ear–plant height ratio, to enhance dry matter accumulation and increase source size, particularly under RLN, and to ultimately achieve a higher fresh grain yield.  In contrast, a lower ear height and ear–plant height ratio in waxy maize probably contributed more to the greater kernel number and weight under RLN, likely due to a lower ear height which can reduce the distance between sink and source, enabling more efficient photoassimilate allocation to the ear

.
Keywords:  fresh maize       nitrogen application rates        yield        characteristics of nitrogen-efficient varieties  
Received: 12 October 2023   Online: 29 March 2024   Accepted: 28 February 2024
Fund: This research was funded by the Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding, China (2021C02064-4) and the Zhejiang Province “Three Rural and Nine Party” Science and Technology Cooperation Plan Project (2023SNJF002).
About author:  Fei Bao, E-mail: baof@zaas.ac.cn; Ping Zhang, E-mail: zhangping@cau.edu.cn; #Correspondence Fucheng Zhao, Tel: +86-579-86012610, E-mail: zhaofc@zaas.ac.cn * These authors contributed equally to this study.

Cite this article: 

Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. 2025. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties. Journal of Integrative Agriculture, 24(10): 3803-3818.

Ahmad I, Batyrbek M, Ikram K, Ahmad S, Kamran M, Misbah, Khan R S, Hou F, Han Q. 2023. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture22, 417–433.

Alijani K, Bahrani M J, Kazemeini S A, Yasrebi J. 2021. Soil and sweet corn quality responses to tillage, residue, and nitrogen management in southern Iran. International Journal of Plant Production15, 139–150.

Arisede C, Mainassara Z A, Jill C, Amsal T, Cosmos M, Bish D, Benhildah M, Mike O, Maruthi P B. 2020. Low-N stress tolerant maize hybrids have higher fertilizer N recovery efficiency and reduced N-dilution in the grain compared to susceptible hybrids under low N conditions. Plant Production Science23, 417–426.

Beed F D, Paveley N D, Sylvester-Bradley R. 2007. Predictability of wheat growth and yield in light-limited conditions. The Journal of Agricultural Science145, 63–79.

Chen F. 2001. Screening for nitrogen-efficient maize genotypes and heterosis analysis. Ph D thesis, China Agricultural University, China. (in Chinese)

Chen F, Fang Z, Gao Q, Ye Y, Jia L, Yuan L, Mi G, Zhang F. 2013. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Science China-Life Sciences56, 552–560.

Chen G, Cao H, Chen D, Zhang L, Zhao W, Zhang Y, Ma W, Jiang R, Zhang H, Zhang F. 2019. Developing sustainable summer maize production for smallholder farmers in the North China Plain: An agronomic diagnosis method. Journal of Integrative Agriculture18, 1667–1679.

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chivenge P, Saito K, Bunquin M A, Sharma S, Dobermann A. 2021. Co-benefits of nutrient management tailored to smallholder agriculture. Global Food Security30, 100570.

Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research133, 48–67.

Deng X Q, Fan G G, Liu Z X. 2019. Application of NPK combined application to agronomic traits, yield and nutrient absorption and utilization of waxy maize influences. Tillage and Cultivation5, 13–18. (in Chinese)

Du X, Wang Z, Lei W, Kong L. 2021. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Scientific Reports11, 358.

Duvick D N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). In: Advances in Agronomy. Elsevier Science & Technology, USA. pp. 83–145.

Gao L, Li Y L, Li W, Yu T, Li G K, Li C Y, Hu J G. 2017. Effects of nitrogen application on yields and nitrogen use efficiencies of sweet corn in South China. Journal of Plant Nutrition and Fertilizer23, 1215–1224. (in Chinese)

Gonzalez V H, Tollenaar M, Bowman A, Good B, Lee E A. 2018. Maize yield potential and density tolerance. Crop Science58, 472–485.

Gu B, Zhang X, Lam S K, Yu Y, van Grinsven H J M, Zhang S, Wang X, Bodirsky B L, Wang S, Duan J, Ren C, Bouwman L, de Vries W, Xu J, Mark A, Sutton M A, Chen D. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature613, 77–84.

Huang G, Liu Y, Guo Y, Peng C, Tan W, Zhang M, Li Z, Zhou Y, Duan L. 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Research260, 107982.

Illés Á, Szabó A, Mousavi S M N, Bojtor C, Vad A, Harsányi E, Sinka L. 2022. The influence of precision dripping irrigation system on the phenology and yield indices of sweet maize hybrids. Water14, 2480.

Kamran M, Ahmad I, Wang H, Wu X, Xu J, Liu T, Ding R, Han Q. 2018. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Research224, 148–159.

Kong L, Xie Y, Hu L, Si J, Wang Z. 2017. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports7, 43363.

Ladha J K, Pathak H J, Krupnik T, Six J, van Kessel C. 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. In: Advances in Agronomy. Elsevier Science & Technology, USA. pp. 85–156.

Li G, Wang L, Li L, Lu D, Lu W. 2020. Effects of fertilizer management strategies on maize yield and nitrogen use efficiencies under different densities. Agronomy Journal112, 368–381.

Li J, Zhang H, Li B X. 2021. Current situation and development countermeasures of fresh maize cultivation in Zhejiang. Journal of Zhejiang Agricultural Sciences62, 1679–1681. (in Chinese)

Li Q, Kong F, Wu Y, Feng D, Yuan J C. 2020. Increasing nitrogen accumulation and reducing nitrogen loss with N-efficient maize cultivars. Plant Production Science23, 260–269.

Li W, Ma L F, Cao X M, Yu F F, Yao Z Y, Liu G H, Lv A Z. 2021. Effect of nitrogen fertilizer on yield of waxy corn under different planting density in Bashang area of northwest Hebei Province. Feed Research44, 109–112. (in Chinese)

Li W, Tan Z, Li R, Yuan J, Yan S, Li C. 2020. Starch accumulation, size distribution and related enzyme activity in superior and inferior kernels of maize under different nitrogen rates. Pakistan Journal of Botany53, 105–111.

Liang Y, Zhang Y, Liang Z, Zhang Q, Lan Z, Xu P, Li S, Yao L, Chen J. 2009. Guiding opinions on scientific fertilization in spring of Guangdong Province in 2009. Guangdong Agricultural Sciences4, 110–112. (in Chinese)

Liu Z, Gao J, Zhao S, Sha Y, Huang Y, Hao Z, Ke L, Chen F, Yuan L, Mi G. 2023. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crops Research291, 108806.

Liu Z, Hu C, Wang Y, Sha Y, Hao Z, Chen F, Yuan L, Mi G. 2021. Nitrogen allocation and remobilization contributing to low-nitrogen tolerance in stay-green maize. Field Crops Research263, 108078.

Liu Z, Sha Y, Huang Y, Hao Z, Guo W, Ke L, Chen F, Yuan L, Mi G. 2022. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crops Research284, 108580.

Lu C Q, Tian H Q. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data9, 181–192.

Ma D, Li S, Zhai L, Yu X, Xie R, Gao J. 2020. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s. Field Crops Research250, 107766.

Mi G, Chen F, Yuan L, Zhang F. 2016. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. In: Advances in Agronomy, Elsevier, USA. pp. 73–97.

Mi G, Li J, Chen F, Zhang F, Cui Z, Liu X. 2003. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. Journal of Plant Nutrition26, 237–247.

Ning P, Li S, Li X, Li C. 2014. New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Research166, 66–71.

Pei Y, Chen X, Niu Z, Su X, Wang Y, Wang X. 2023. Effects of nitrogen fertilizer substitution by cow manure on yield, net GHG emissions, carbon and nitrogen footprints in sweet maize farmland in the Pearl River Delta in China. Journal of Cleaner Production399, 136676.

Raza S, Miao N, Wang P, Ju X, Chen Z, Zhou J, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology26, 3738–3751.

Wang G Y, Zhao F C, Tan H P, Bao F, Han H L, Su T. 2015. Current status and main cropping patterns of the fresh maize industry in Zhejiang Province. Journal of Zhejiang Agricultural Sciences56, 1553–1556. (in Chinese)

Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. 2024. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture23, 122–140.

Wei S, Wang X, Li G, Qin Y, Jiang D, Dong S. 2019. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions. Frontiers in Plant Science10, 180.

Wu Y W, Zhao B, Li X L, Liu Q L, Feng D J, Lan T Q, Kong F L, Li Q, Yuan J C. 2022. Nitrogen application affects maize grain filling by regulating grain water relations. Journal of Integrative Agriculture21, 977–994.

Xia L, Yan X. 2023. How to feed the world while reducing nitrogen pollution. Nature613, 34–35.

Xu C, Gao Y, Tian B, Ren J, Meng Q, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research200, 71–79.

Yang J, Zhang J. 2005. Grain filling of cereals under soil drying. New Phytologist169, 223–236.

Yu W, Yue Y, Wang F. 2022. The spatial-temporal coupling pattern of grain yield and fertilization in the North China Plain. Agricultural Systems196, 103330.

Yue K, Li L, Xie J, Liu Y, Xie J, Anwar S, Fudjoe S K. 2022. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Frontiers in Plant Science12, 798119.

Zhang W, Cao G, Li X, Zhang H, Wang C, Liu Q, Chen X, Cui Z, Shen J, Jiang R, Mi G, Miao Y, Zhang F, Dou Z. 2016. Closing yield gaps in China by empowering smallholder farmers. Nature537, 671–674.

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhao B, Niu X, Ata-Ul-Karim S T, Wang L, Duan A, Liu Z, Lemaire G. 2020. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. European Journal of Agronomy113, 125967.

Zhao Y, Lv Y, Zhang S, Ning F, Cao Y, Liao S, Wang P, Huang S. 2021. Shortening internodes near ear: An alternative to raise maize yield. Journal of Plant Growth Regulation41, 628–638.

Zhao Y, Zhang S, Lv Y, Ning F, Cao Y, Liao S, Wang P, Huang S. 2022. Optimizing ear–plant height ratio to improve kernel number and lodging resistance in maize (Zea mays L.). Field Crops Research276, 108376.

Zhu Y H, Yang J F, Liu Y Q, Guo G F, Ding M W, Jia L L. 2021. Optimal nitrogen fertilizer application rate and its effects on yield and nutrient utilization efficiency of fresh maize in piedmont plain of Hebei Province. Journal of Hebei Agricultural Sciences25, 60–64. (in Chinese)

[1] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[2] Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang. Reasonable dry cultivation methods can balance the yield and grain quality of rice[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1030-1043.
[3] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[4] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[5] Xiaobo Gu, Zhikai Cheng, Yadan Du, Huanjie Cai, Yupeng Li, Yuannong Li, Heng Fang, Shikun Sun. Optimizing planting density to improve growth, yield and resource use efficiencies for winter oilseed rape under ridge-furrow film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3819-3837.
[6] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[7] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
[8] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
No Suggested Reading articles found!