Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 2902-2919    DOI: 10.1016/j.jia.2024.03.081
Special Focus: Innovative Pathways to Sustainable Wheat Production Advanced Online Publication | Current Issue | Archive | Adv Search |
Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat

Qing Li1, Zhuangzhuang Sun1, Zihan Jing1, Xiao Wang1#, Chuan Zhong1, Wenliang Wan2, Maguje Masa Malko1, Linfeng Xu2, Zhaofeng Li2, Qin Zhou1, Jian Cai1, Yingxin Zhong1, Mei Huang1, Dong Jiang1, 2#

1 National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture and Rural Affairs/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China

 Highlights 
Drought priming enhances plant thermoregulation, stomatal conductance, and photosynthesis, thus reducing post-anthesis drought losses in 1,000-grain weight and grain yield.
Transcriptomic analysis identified 416 drought priming-responsive genes with 27 transcription factors.
These genes displayed six distinct temporal expression patterns, enriched in stress-adaptive pathways.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
频发的干旱事件,尤其是发生在生殖生长阶段的干旱,严重限制了全球作物生产力。在生长前期进行适度的干旱锻炼是提高植物应对反复出现的重度干旱胁迫的有效策略,然而,其潜在的机制仍不清楚。 在本研究中,我们在营养生长阶段对小麦施加干旱锻炼,并在花后10天对其进行干旱胁迫, 随后利用在干旱锻炼结束时、恢复阶段以及干旱胁迫结束时采集的叶片样本进行转录组测序,同时结合植株表型和生理指标测定。研究发现,与未锻炼的植株相比,经干旱锻炼的小麦植株能保持较低的植株温度,较高的气孔开度和光合作用,从而导致后期干旱胁迫下小麦的千粒重和籽粒产量损失较少。有趣的是,动态转录组学分析发现了416个基因,其中27个转录因子(如MYB、NAC、HSF),可能都与锻炼诱导的小麦耐旱性的提升密切相关。此外,响应干旱锻炼的候选基因呈现出六种时间表达模式,并显著富集于植物激素信号转导、淀粉和蔗糖代谢、精氨酸和脯氨酸代谢、肌醇磷酸代谢以及蜡质合成等几种与胁迫响应密切相关的通路中。总之,该研究结果为揭示前期干旱锻炼可有效提升小麦长期耐旱性的生理和分子机制提供了新见解,为应对全球变暖背景下日益增加的非生物胁迫和确保粮食安全提供了潜在的方法。


Abstract  
Frequent drought events severely restrict global crop productivity, especially those occurring in the reproductive stages.  Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.  However, the underlying mechanisms remain unclear.  Here, we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.  We then collected leaf samples at the ends of the drought priming and recovery periods, and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.  The drought-primed wheat plants maintained a lower plant temperature, with higher stomatal openness and photosynthesis, thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.  Interestingly, 416 genes, including 27 transcription factors (e.g., MYB, NAC, HSF), seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.  Moreover, the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways, such as plant hormone signal transduction, starch and sucrose metabolism, arginine and proline metabolism, inositol phosphate metabolism, and wax synthesis.  These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat, and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.  
Keywords:  wheat        drought priming        drought tolerance        RNA-Seq        gene expression pattern  
Received: 21 December 2023   Online: 27 March 2024   Accepted: 28 February 2024
Fund: 
This work was supported by the projects of the National Key Research and Development Program of China (2023YFD2300202), the Natural Science Foundation of Jiangsu Province, China (BK20241543), the National Natural Science Foundation of China (32272213, 32030076, U1803235, and 32021004), the Fundamental Research Funds for the Central Universities, China (XUEKEN2023013), the Jiangsu Innovation Support Program for International Science and Technology Cooperation Project, China (BZ2023049), the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(22)1006), the China Agriculture Research System (CARS-03), and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP).
About author:  Qing Li, E-mail: qingli@njau.edu.cn; #Correspondence Dong Jiang, Tel: +86-25-84399627, E-mail: jiangd@njau.edu.cn; Xiao Wang, Tel: +86-25-84399627, E-mail: xiaowang@njau.edu.cn

Cite this article: 

Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. 2025. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat. Journal of Integrative Agriculture, 24(8): 2902-2919.

An J, Li Q, Yang J, Zhang G, Zhao Z, Wu Y, Wang Y, Wang W. 2019. Wheat F-box protein TaFBA1 positively regulates plant drought tolerance but negatively regulates stomatal closure. Frontiers in Plant Science10, 1242.

Avramova Z. 2015. Transcriptional ‘memory’ of a stress: Transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal83, 149–159.

Banik P, Zeng W, Tai H, Bizimungu B, Tanino K. 2016. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environmental and Experimental Botany126, 76–89.

Borrell A K, Mullet J E, George-Jaeggli B, van Oosterom E J, Hammer G L, Klein P E, Jordan D R. 2014. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65, 6251–6263.

Bruce T J A, Matthes M C, Napier J A, Pickett J A. 2007. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science173, 603–608.

Byun Y J, Koo M Y, Joo H J, Ha-Lee Y M, Lee D H. 2014. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in ArabidopsisPhysiologia Plantarum152, 256–274.

Conrath U. 2011. Molecular aspects of defence priming. Trends in Plant Science16, 524–531.

Crisp P A, Ganguly D, Eichten S R, Borevitz J O, Pogson B J. 2016. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Science Advances2, e1501340.

Ding Y, Liu N, Virlouvet L, Riethoven J J, Fromm M, Avramova Z. 2013. Four distinct types of dehydration stress memory genes in Arabidopsis thalianaBMC Plant Biology13, 229.

Ding Y, Virlouvet L, Liu N, Riethoven J J, Fromm M, Avramova Z. 2014. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thalianaBMC Plant Biology14, 1–15.

Drosou V, Kapazoglou A, Letsiou S, Tsaftaris A S, Argiriou A. 2021. Drought induces variation in the DNA methylation status of the barley HvDME promoter. Journal of Plant Research134, 1351–1362.

Fang T, Qian C, Daoura B G, Yan X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma X F. 2023. A novel TF molecular switch-mechanism found in two contrasting ecotypes of a psammophyte, Agriophyllum squarrosum, in regulating transcriptional drought memory. BMC Plant Biology23, 167.

Felix G, Duran J D, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal18, 265–276.

de la Garma J G, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio J S, Bru R, Olmos E. 2015. New insights into plant salt acclimation: The roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytologist205, 216–239.

Guedes F A D, Menezes-Silva P E, DaMatta F M, Alves-Ferreira M. 2019. Using transcriptomics to assess plant stress memory. Theoretical and Experimental Plant Physiology31, 47–58.

Guedes F A D, Nobres P, Rodrigues D C, Menezes-Silva P E, Ribeiro-Alves M, Correa R L, DaMatta F M, Alves-Ferreira M. 2018. Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environmental and Experimental Botany147, 220–233.

He Y, Zhou K, Wu Z, Li B, Fu J, Lin C, Jiang D. 2019. Highly efficient nanoscale analysis of plant stomata and cell surface using polyaddition silicone rubber. Frontiers in Plant Science10, 1569.

Heese A, Hann D R, Gimenez-Ibanez S, Jones A, Rathjen J P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America104, 12217–12222.

Iwasaki M, Paszkowski J. 2014. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proceedings of the National Academy of Sciences of the United States of America111, 8547–8552.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Kinoshita T, Seki M. 2014. Epigenetic memory for stress response and adaptation in plants. Plant and Cell Physiology55, 1859–1863.

Leng P, Zhao J. 2020. Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics133, 1455–1465.

Li J, Wen J, Lease K A, Doke J T, Tax F E, Walker J C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell110, 213–222.

Li P, Yang H, Wang L, Liu H, Huo H, Zhang C, Liu A, Zhu A, Hu J, Lin Y. 2019. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Frontiers in Genetics10, 55.

Li Q, Wang X, Sun Z, Wu Y, Malkodslo M M, Ge J, Jing Z, Zhou Q, Cai J, Zhong Y, Huang M, Jiang D. 2023. DNA methylation levels of TaP5CS and TaBADH are associated with enhanced tolerance to PEG-induced drought stress triggered by drought priming in wheat. Plant Physiology and Biochemistry200, 107769.

Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: Short oligonucleotide alignment program. Bioinformatics24, 713–714.

Liu N, Ding Y, Fromm M, Avramova Z. 2014. Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of Athaliana dehydration stress responding genes. Nucleic Acids Research42, 5556–5566.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 1–21.

Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran L S, Qin F. 2015. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications6, 8326.

Mao H, Yu L, Han R, Li Z, Liu H. 2016. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic ArabidopsisPlant Physiology and Biochemistry105, 55–66.

Mersmann S, Bourdais G, Rietz S, Robatzek S. 2010. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiology154, 391–400.

Paolacci A, Tanzarella O, Porceddu E, Ciaffi M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology10, 1–11.

Rossatto T, Souza G M, do Amaral M N, Auler P A, Pérez-Alonso M M, Pollmann S, Braga E J B. 2023. Cross-stress memory: Salt priming at vegetative growth stages improves tolerance to drought stress during grain-filling in rice plants. Environmental and Experimental Botany206, 105187.

Sadder M T, Musallam A, Allouzi M, Duwayri M A. 2022. Dehydration stress memory genes in Triticum turgidum L. ssp. durum (Desf.). BioTech11, 43.

Sakuradani E, Zhao L, Haslam T M, Kunst L. 2013. The CER22 gene required for the synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. Planta237, 731–738.

Sanchez D H, Paszkowski J. 2014. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene. PLoS Genetics10, e1004806.

Sedaghatmehr M, Stüwe B, Mueller-Roeber B, Balazadeh S. 2022. Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6Journal of Experimental Botany73, 6394–6404.

Shen X, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H. 2014. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in ArabidopsisPlant Molecular Biology86, 303–317.

Sperdouli I, Moustakas M. 2012. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology169, 577–585.

Sun Z, Song Y, Li Q, Cai J, Wang X, Zhou Q, Huang M, Jiang D. 2021. An integrated method for tracking and monitoring stomata dynamics from microscope videos. Plant Phenomics2021, 1–11.

Sun Z, Wang X, Song Y, Li Q, Song J, Cai J, Zhou Q, Zhong Y, Jin S, Jiang D. 2023. StomataTracker: Revealing circadian rhythms of wheat stomata with in-situ video and deep learning. Computers and Electronics in Agriculture212, 108120.

Tian F, Yang D C, Meng Y Q, Jin J, Gao G. 2020. PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Research48, 1104–1113.

Tian L, Zhang Y, Kang E, Ma H, Zhao H, Yuan M, Zhu L, Fu Y. 2019. Basic-leucine zipper 17 and Hmg-CoA reductase degradation 3A are involved in salt acclimation memory in ArabidopsisJournal of Integrative Plant Biology61, 1062–1084.

Wang W S, Pan Y J, Zhao X Q, Dwivedi D, Zhu L H, Ali J, Fu B Y, Li Z K. 2011. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). Journal of Experimental Botany62, 1951–1960.

Wang X, Chen J, Ge J, Huang M, Cai J, Zhou Q, Dai T, Mur L A J, Jiang D. 2021. The different root apex zones contribute to drought priming induced tolerance to a reoccurring drought stress in wheat. The Crop Journal9, 1088–1097.

Wang X, Ge J, He M, Li Q, Cai J, Zhou Q, Zhong Y, Wollenweber B, Jiang D. 2023. Enhancing crop resilience: Understanding the role of drought priming in wheat stress response. Field Crops Research302, 09083.

Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. 2020a. Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal9, 120–132.

Wang X, Mao Z, Zhang J, Hemat M, Huang M, Cai J, Zhou Q, Dai T, Jiang D. 2019. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany166, 103804.

Wang X, Zhang J, Song J, Huang M, Cai J, Zhou Q, Li X, Jiang D. 2020b. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.). Plant Biology22, 1113–1122.

Wang X, Zhang X, Chen J, Wang X, Cai J, Zhou Q, Dai T, Cao W, Jiang D. 2018. Parental drought-priming enhances tolerance to post-anthesis drought in offspring of wheat. Frontiers in Plant Science9, 261.

Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, Betts A, Herrmann J, Edwards E J, Okamoto M. 2021. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications12, 1952.

Xu Y N, Wu Y, Han Y, Song J Q, Zhang W Y, Han W, Liu B H, Bai W B. 2024. Effect of chemical regulators on the recovery of leaf physiology, dry matter accumulation and translocation, and yield-related characteristics in winter wheat following dry-hot wind. Journal of Integrative Agriculture23, 108–121.

Yang M, He J, Sun Z, Li Q, Cai J, Zhou Q, Wollenweber B, Jiang D, Wang X. 2023. Drought priming mechanisms in wheat elucidated by in-situ determination of dynamic stomatal behavior. Frontiers in Plant Science14, 1138494.

Yang Y, Zhou Z, Li Y, Lv Y, Yang D, Yang S, Wu J, Li X, Gu Z, Sun X. 2020. Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. Journal of Experimental Botany71, 4159–4170.

Ying S, Zhang D F, Fu J, Shi Y S, Song Y C, Wang T Y, Li Y. 2012. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic ArabidopsisPlanta235, 253–266.

Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J. 2018. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health15, 839.

Zhang L, Chu Q Q, Jiang Y L, Chen F, Lei Y D. 2021. Impacts of climate change on drought risk of winter wheat in the North China Plain. Journal of Integrative Agriculture20, 2601–2612.

[1] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[3] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[4] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[5] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[6] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[7] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[8] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[9] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[10] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[11] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[12] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[13] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[14] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
[15] Shuting Yu, Tianshu Wang, Li Wang, Shuihong Yao, Bin Zhang. Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 739-753.
No Suggested Reading articles found!