Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 2920-2939    DOI: 10.1016/j.jia.2024.03.035
Special Focus: Innovative Pathways to Sustainable Wheat Production Advanced Online Publication | Current Issue | Archive | Adv Search |
Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration

Zimeng Liang1, Juan Li1, Jingyi Feng1, Zhiyuan Li1, Vinay Nangia2, Fei Mo1, Yang Liu1#

1 College of Agronomy, Northwest A&F University, Yangling 712100, China

2 International Center for Agricultural Research in the Dry Areas, Rabat 999055, Morocco

 Highlights 
Low nitrogen stress disrupts redox balance in florets, inducing cell death and degeneration.
Brassinosteroids optimize carbon allocation in the tricarboxylic acid cycle (TCA) cycle and boost adenosine triphosphate (ATP) to reduce floret degeneration.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
减少施氮量可以缓解环境退化和资源浪费等问题。然而,减少施氮量也会加剧小麦小花退化的问题,导致产量下降。因此,研究低氮胁迫下小麦小花退化机制,明确缓解措施,有利于实现小麦高产和可持续发展。为了探讨低氮胁迫影响小麦小花退化的生理机制以及外源油菜素甾醇是否可以缓解该胁迫,本研究设置了氮肥梯度试验(N0,不施氮;N1,120 kg ha-1纯氮;N2,240 kg ha-1纯氮)和外源叶面喷施试验(N0CK,不施氮+外源喷施纯水;N0BR,不施氮+外源喷施 24-表油菜素内酯(一种有活性的油菜素甾醇类激素);和N1,120kg ha-1纯氮+外源喷施纯水)。结果表明,低氮胁迫诱导小麦产生了大量活性氧。尽管小麦穗通过合成黄酮类化合物来对抗氧化应激,但它们的能量代谢(糖酵解和三羧酸循环)和抗坏血酸谷胱甘肽循环被抑制,使穗内的活性氧水平仍处于较高水平,从而诱导细胞死亡,加剧小花退化。此外,油菜素甾醇在低氮胁迫下对小麦小花退化具有调控作用。外源叶面喷施24-表油菜素内酯促进了穗的能量代谢和抗坏血酸-谷胱甘肽循环,增加了能量电荷,有效消除了部分由低氮胁迫诱导生产的活性氧,从而缓解了由低氮应激引起的小花退化。总之,低氮胁迫破坏了小麦穗的氧化还原稳态,导致小花退化。油菜素甾醇通过改善低氮下小麦穗的氧化还原状态缓解了小花退化。本研究为解决高产与可持续发展之间的矛盾提供了理论支持,有利于小麦生产中的“减氮高效”。


Abstract  

Reducing nitrogen application rates can mitigate issues such as environmental degradation and resource wastage.  However, it can also exacerbate problems such as wheat floret degeneration, leading to reduced yields.  Therefore, investigating wheat floret degeneration mechanisms under low-nitrogen stress and identifying mitigation measures are conducive to achieving high yields and sustainable development.  To investigate the physiological mechanism of how low-nitrogen stress affects wheat floret degradation and whether exogenous brassinosteroids (BRs) can alleviate this stress, experiments were designed with treatments of three nitrogen application rates (N0, no nitrogen application; N1, 120 kg ha–1 pure nitrogen; N2, 240 kg ha–1 pure nitrogen) and exogenous spraying (N0CK, no nitrogen with water spraying; N0BR, no nitrogen with 24-epibrassinolide (an active brassinosteroid) spraying; N1, 120 kg ha–1 pure nitrogen with water spraying).  The results indicated that low-nitrogen stress generated a large amount of reactive oxygen species.  Although wheat spikes synthesized flavonoids to combat oxidative stress, their energy metabolism (glycolysis and tricarboxylic acid cycle) and ascorbate-glutathione cycle were inhibited, which kept the reactive oxygen levels elevated within the spike, induced cell death and exacerbated floret degeneration.  Furthermore, brassinosteroids played a role in regulating wheat floret degeneration under low-nitrogen stress.  Exogenous foliar spraying of 24-epibrassinolide promoted energy metabolism and the ascorbate-glutathione cycle within the spike, which enhanced the energy charge and effectively mitigated a portion of the reactive oxygen induced by low-nitrogen stress, thereby alleviating the floret degeneration caused by low-nitrogen stress.  In summary, low-nitrogen stress disrupts the redox homeostasis of wheat spikes, leading to floret degeneration, while brassinosteroids alleviate floret degeneration by improving the redox state of wheat spikes.  This study provides theoretical support for balancing the contradiction between high yields and sustainable development and will be beneficial for the application of low nitrogen in production.

Keywords:  brassinosteroids        fertile florets        nitrogen application rate        reactive oxygen        wheat  
Received: 02 October 2023   Online: 07 March 2024   Accepted: 01 February 2024
Fund: This study was supported by the Key Research and Development Program of Shaanxi, China (2021NY-083) and the National Natural Science Foundation of China (31871567).
About author:  #Correspondence Yang Liu, E-mail: liuyang0328@126.com, yangl@nwafu.edu.cn

Cite this article: 

Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. 2025. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration. Journal of Integrative Agriculture, 24(8): 2920-2939.

Ahmed M M, Sadak M S. 2016. Effect of putrescine foliar application on wheat genotypes (Triticum aestivum L.) under water stress conditions. Inter Journal of Pharm Technical Research9, 94–102.

Ali M B, Hahn E J, Hahn K Y. 2005. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiology and Biochemistry43, 213–223.

Bakry A, Sadak M S, El-Karamany M F, Tawfik M M. 2019. Sustainable production of two wheat cultivars under water stress conditions. Plant Archives19, 2307–2315.

Chen J, Chen K, Zhang W, Zhang Z, Zhang J, Yang J. 2021. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines. The Crop Journal9, 109–119.

Chen W, Gong L, Guo Z, Wang W, Zhang H, Zhang X, Yu S, Xiong L, Luo J. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant6, 1769–1780.

Cheng S, Wang Q, Manghwar H, Liu F. 2022. Autophagy-mediated regulation of different meristems in plants. International Journal of Molecular Sciences23, 6236.

Cheng X, Wang X, Zhang A, Wang P, Chen Q, Ma T, Li W, Liang Y, Sun X, Fang Y. 2020. Foliar phenylalanine application promoted antioxidant activities in cabernet sauvignon by regulating phenolic biosynthesis. Journal of Agricultural and Food Chemistry, 68, 15390–15402.

Dixon S J, Stockwell B R. 2014. The role of iron and reactive oxygen species in cell death. Nature Chemical Biology10, 9–17.

Fábián A, Sáfrán E, Szabó-Eitel G, Barnabás B, Jäger K. 2019. Stigma functionality and fertility are reduced by heat and drought co-stress in wheat. Frontiers in Plant Science10, 244.

Ferrante A, Savin R, Slafer G A. 2010. Floret development of durum wheat in response to nitrogen availability. Journal of Experimental Botany61, 4351–4359.

Ferrante A, Savin R, Slafer G A. 2013. Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. Journal of Experimental Botany64, 169–184.

Ferrante A, Savin R, Slafer G A. 2020. Floret development and spike fertility in wheat: Differences between cultivars of contrasting yield potential and their sensitivity to photoperiod and soil N. Field Crops Research256, 107908.

Foyer C H, Noctor G. 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell17, 1866–1875.

Ghiglione H O, Gonzalez F G, Serrago R, Maldonado S B, Chilcott C, Curá J A, Miralles D J, Zhu T, Casal J J. 2008. Autophagy regulated by day lengthdetermines the number of fertile florets in wheat. The Plant Journal55, 1010–1024.

Guo Z, Slafer G A, Schnurbusch T. 2016. Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. Journal of Experimental Botany67, 4221–4230.

Hanafy R S, Sadak M S. 2023. Foliar spray of stigmasterol regulates physiological processes and antioxidant mechanisms to improve yield and quality of sunflower under drought stress. Journal of Soil Science and Plant Nutrition23, 2433–2450.

Hasanuzzaman M, Bhuyan M B, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants9, 681.

Hasanuzzaman M, Nahar K, Anee T I, Fujita M. 2017. Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants23, 249–268.

Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I. 2004. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science305, 855–858.

Havaux M, Kloppstech K. 2001. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta213, 953–966.

Heng Y Q, Wu C Y, Long Y, Luo S, Luo X J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. 2018. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell30, 889–906.

Hou L, Lin R X, Wang X J, Li H, Zhao C Z, Zhu X J, Li C S, Li G H. 2022. The mechanisms of pod zone nitrogen application on peanut pod yield. Russian Journal of Plant Physiology69, 51.

Hu P, Tan Y, Wen Y, Fang Y, Wang Y, Wu H, Wang J, Wu K, Chai B, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Xue D, Qian Q, Hu J. 2022. LMPA regulates lesion mimic leaf and panicle development through ROS-induced PCD in rice. Frontiers in Plant Science13, 875038.

Jiang J, Hu J, Tan R, Han Y, Li Z. 2019. Expression of IbVPE1 from sweet potato in Arabidopsis affects leaf development, flowering time and chlorophyll catabolism. BMC Plant Biology19, 1–12.

Joo J H, Wang S, Chen J G, Jones A M, Fedoroff N V. 2005. Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell17, 957–970.

Juszczuk I M, Szal B, Rychter A M. 2012. Oxidation–reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. Plant Cell and Environment35, 296–307.

Kaur H, Sirhindi G, Bhardwaj R, Alyemeni M N, Siddique K H M, Ahmad P. 2018. 28-Homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica junceaScientific Reports8, 8735.

Kelliher T, Walbot V. 2012. Hypoxia triggers meiotic fate acquisition in maize. Science337, 345–348.

Langer R H M, Hanif M. 1973. A study of floret development in wheat (Triticum aestivum L.). Annals of Botany37, 743–751.

Larsson C, Nilsson A, Blomberg A, Gustafsson L. 1997. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: A chemostat study under carbon- or nitrogen-limiting conditions. Journal of Bacteriology179, 7243–7250.

Li C, Cao W, Dai T. 2001. Dynamic characteristics of floret primordium development in wheat. Field Crops Research71, 71–76.

Li C, Zhang N, Guan B, Zhou Z, Mei F. 2019. Reactive oxygen species are involved in cell death in wheat roots against powdery mildew. Journal of Integrative Agriculture18, 1961–1970.

Li H, Liu H, Wang Y, Teng R M, Liu J, Lin S, Zhuang J. 2020. Cytosolic ascorbate peroxidase 1 modulates ascorbic acid metabolism through cooperating with nitrogen regulatory protein P-II in tea plant under nitrogen deficiency stress. Genomics112, 3497–3503.

Li S, Jiang H, Wang J, Wang Y, Pan S, Tian H, Duan M, Wang S, Tang X, Mo Z. 2019. Responses of plant growth, physiological, gas exchange parameters of super and non-super rice to rhizosphere temperature at the tillering stage. Scientific Reports9, 10618.

Liang Z, Cao X, Gao R, Guo N, Tang Y, Vinay N, Liu Y. 2025. Brassinosteroids alleviates wheat floret degeneration under low nitrogen stress by promoting the distribution of sucrose from stems to spikes. Journal of Integrative Agriculture24, 497–516.

Liang Z, Luo J, Wei B, Liao Y, Liu Y. 2021. Trehalose can alleviate decreases in grain number per spike caused by low-temperature stress at the booting stage by promoting floret fertility in wheat. Journal of Agronomy and Crop Science207, 717–732.

Liu Z, Liu L, Liu Z, Zeng F, Jiang L, Tang K. 2016. Effect of brassinolide on energy status and proline metabolism in postharvest bamboo shoot during chilling stress. Postharvest Biology and Technology111, 240–246.

Mosier A R. 2002. Environmental challenges associated with needed increases in global nitrogen fixation. Nutrient Cycling in Agroecosystems63, 101–116.

Mullarky E, Cantley L C. 2015. Diverting glycolysis to combat oxidative stress. In: Innovative MedicineBasic Research and Development. Springer, Japan. pp. 3–23.

Noctor G, Gomez L, Vanacker H, Foyer C H. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. Journal of Experimental Botany53, 1283–1304.

Noctor G, Mhamdi A, Chaouch S, Han Y I, Neukermans J, Marquez-Garcia B, Queval G, Foyer C H. 2012. Glutathione in plants: An integrated overview. Plant Cell and Environment35, 454–484.

Ochoa-Velasco C E, Valadez-Blanco R, Salas-Coronado R, Sustaita-Rivera F, Hernández-Carlos B, García-Ortega S, Santos-Sánchez N F. 2016. Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Science Horticulturae201, 338–345.

Prieto P, Ochagavía H, Savin R, Griffiths S, Slafer G A. 2018a. Physiological determinants of fertile floret survival in wheat as affected by earliness per se genes under field conditions. European Journal of Agronomy99, 206–213.

Prieto P, Ochagavía H, Savin R, Savin S, Slafer G A. 2018b. Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions. Journal of Experimental Botany69, 2633–2645.

Ramakrishnan M, Papolu P K, Satish L, Vinod K K, Wei Q, Sharma A, Emamverdian A, Zou L H, Zhou M. 2022. Redox status of plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. Journal of Advanced Reaserch42, 99–116.

Sadak M S. 2022. Nitric oxide and hydrogen peroxide as signalling molecules for better growth and yield of wheat plant exposed to water deficiency. Egyptian Journal of Chemistry65, 209–223.

Sadak M S, Ahmed M M. 2016. Physiological role of cyanobacteria and glycinebetaine on wheat plant grown under salinity stress. Inter Journal of Pharm Technical Research9, 78–92.

Shah K, Nahakpam S. 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiology and Biochemistry57, 106–113.

Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security5, 291–317.

Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany53, 1305–1319.

Singh M, Singh V P, Prasad S M. 2019. Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiology and Biochemistry141, 466–476.

Slafer G A, Savin R, Sadras V O. 2014. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Research157, 71–83.

Surgun-Acar Y, Zemheri-Navruz Y. 2019. 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. Journal of Plant Physiology238, 12–19.

Teesalu M, Rovenko B M, Hietakangas V. 2017. Salt-inducible kinase 3 provides sugar tolerance by regulating NADPH/NADP+ redox balance. Current Biology27, 458–464.

Waddington S R, Cartwright P M, Wall P C. 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Annals of Botany51, 119–130.

Wang S Q, Zhao H H, Zhao L M, Gu C M, Na Y G, Xie B S, Cheng S H, Pan G J. 2020. Application of brassinolide alleviates cold stress at the booting stage of rice. Journal of Integrative Agriculture19, 975–987.

Wang W, Shen C, Xu Q, Xu S, Du B, Xing D. 2022. Grain yield, nitrogen use efficiency and antioxidant enzymes of rice under different fertilizer N inputs and planting density. Agronomy12, 430.

Wilson D F. 2017. Oxidative phosphorylation: Regulation and role in cellular and tissue metabolism. The Journal of Physiology595, 7023–7038.

Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology5, 218–223.

Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D. 2014. Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiology Plant36, 251–261.

Yan M Y, Yan D L, Yan J J, Xia X J, Shi K, Zhou Y H, Zhou J, Foyer C H, Yu J Q. 2020. Brassinosteroid-mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. The Plant Journal102, 931–947.

Yang J, Miao W, Miao J. 2021. Roles of jasmonates and brassinosteroids in rice responses to high temperature stress - A review. The Crop Journal9, 977–985.

Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Li S Q, Qiao S C, Huang G R, Xiao Y C, Zhang J, Feng Z, Ju X T, Ciais P, Stenseth N C, Hessen D O, Sun Z L, Yu L, Cai W J, et al. 2019. Managing nitrogen to restore water quality in China. Nature567, 516–520.

Zhang W, Fu L, Men C, Yu J, Yao J, Sheng J, Xu Y, Wang Z, Liu L, Yang J, Zhang J. 2020. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food Energy Security9, e201.

Zhang W, Huang H, Zhou Y, Zhou K, Wu Y, Xu Y, Wang W, Zhang H, Gu J, Xiong F, Wang Z, Liu L, Yang J. 2023. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. Plant Cell and Environment46, 1340–1362.

Zhang W, Sheng J, Xu Y, Xu F, Wu Y, Wang W, Wang Z, Yang J, Zhang J. 2019a. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biology19, 1–16.

Zhang W, Zhu K, Wang Z, Zhang H, Gu J, Liu L, Yang J, Zhang J. 2019b. Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative Plant Biology61, 943–963.

Zhang W F, Dou Z X, Dou P, Dou X T, Powlson D, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S. 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America110, 8375–8380.

Zhang Y, Swart C, Alseekh S, Scossa F, Jiang L, Obata T, Graf A, Fernie A R. 2018. The extra-pathway interactome of the TCA cycle: Expected and unexpected metabolic interactions. Plant Physiology177, 966–979.

Zhang Y, Ye C, Su Y, Su W, Lu R, Liu Y, Huang H, He X, Yang M, Zhu S. 2022. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from the literature review and field trials. AgricultureEcosystems & Environment340, 108176.

Zhao Q, Guan X, Zhou L, Asad M A U, Xu Y, Pan G, Cheng F. 2023. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. Plant Cell and Environment46, 1453–1471.

Zheng C, Zhu Y, Wang C, Guo T. 2016. Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development. PLoS ONE11, e0156627.

Zhou Q, Zhang C, Cheng S, Wei B, Liu X, Ji S. 2014. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature. Food Chemistry164, 493–501.

Zhou Y, Diao M, Cui J, Chen X, Wen Z, Zhang J, Liu H. 2018. Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts. Journal of Integrative Agriculture17, 2257–2272.

[1] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
[2] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[3] WANG Zhi-qin, ZHANG Wei-yang, YANG Jian-chang. Physiological mechanism underlying spikelet degeneration in rice[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1475-1481.
[4] YE Shu-e, LI Fang, LI Xian-bi, HONG Qi-bin, ZHAI Yun-lan, HU Ming-yu, WEI Ting, DENG Sha-sha, PEI Yan, LUO Ming. Over-expression of GhDWF4 gene improved tomato fruit quality and accelerated fruit ripening[J]. >Journal of Integrative Agriculture, 2015, 14(10): 1980-1991.
No Suggested Reading articles found!