Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3926-3940    DOI: 10.1016/j.jia.2024.02.003
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Trichoderma gamsii strain TC959 with comprehensive functions to effectively reduce seedling damping-off and promote growth of pepper by direct and indirect action mechanisms

Hengxu Wang1, 2, Hao Hu1, 2, Tianyou Zhao1, 2, Zhaoqing Zeng1, Wenying Zhuang1#

1 State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

 Highlights 
Trichoderma gamsii strain TC959 is discovered possessing comprehensive capabilities in terms of strong antagonistic and plant growth-promoting properties.
The strain directly inhibits plant pathogen causing pepper seedling damping-off disease through production of secondary metabolites, siderophores, and chitinase/xylanase; while promotes the plant growth via indole-3-acetic acid/gibberellin releasement and activates induced systemic resistance of the plant.
The strain demonstrates superior resistance to oxidation and chemical fungicides, which facilitates its practical application in agriculture.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
木霉是广泛分布于自然界的重要真菌资源,其中少数种的部分菌株因具有直接和间接抑制植物病原真菌(以下简称“植病菌”)生长的功效,被研发为生物防治制剂推广应用于农作物病害的绿色防控。已有的相关报道主要侧重于木霉与植病菌之间的直接作用,较少涉及多重作用机制的探讨。本研究旨在探寻对辣椒苗期立枯病具有拮抗、促生及抗逆等综合防治能力的木霉菌株,揭示其多种作用机制并阐明其可利用价值。通过木霉与植病菌对峙培养和盆栽实验,利用激光共聚焦显微观察以及实时荧光定量PCR测定等方法,筛选出一株具有较强拮抗植病菌能力和促进植物生长的盖姆斯木霉菌株TC959。该菌株通过释放次级代谢产物、铁载体、几丁质酶和木聚糖酶,直接抑制植病菌生长;通过释放吲哚-3-乙酸和赤霉素促进植物生长;并定殖于植物根际,增加辣椒幼苗的叶绿素a/b比率和茉莉酸含量,增强植物抗性;同时激活植物诱导性系统抗性,从而提高防御相关基因(PDF1.2MYC2PR1PR4等)的表达量、抗氧化酶(多酚氧化酶、苯丙氨酸解氨酶和过氧化物酶)的活性以及生长激素(吲哚-3-乙酸和赤霉素)的含量,进而增强植物抗病性并改善生长状况。此外,菌株TC959具有耐受过氧化物和化学杀菌剂的优势,其菌丝体生长在含有1 × 10-4 mol L-1高浓度H2O2、30%噁霉灵水分散粒剂、80%代森锰锌可湿性粉剂及40%腈菌唑可湿性粉剂等高浓度杀菌剂的培养基中未受显著抑制,从而为菌株利用创造了良好条件。综上所述,盖姆斯木霉菌株TC959对辣椒立枯病具有较突出的综合性生物防治潜力,是值得进一步开发的优质资源。


Abstract  

Several Trichoderma species serve as biocontrol agents in agriculture through their phytopathogen growth inhibition capabilities.  However, the antagonistic mechanism of certain strains primarily operates through direct action.  This study aims to explore an effective strain with comprehensive capabilities and elucidate its practical viability and action mechanism.  Trichoderma gamsii strain TC959, exhibiting robust antagonistic and plant growth-promoting properties, was identified.  The strain directly inhibits plant pathogen through the production of secondary metabolites, siderophores, and chitinase/xylanase, while promotes plant growth via indole-3-acetic acid/gibberellin release.  Additionally, the strain activates induced systemic resistance by enhancing the chlorophyll a/b ratio and jasmonic acid content in pepper seedlings through root colonization, leading to elevated defense-related gene expression, antioxidant enzyme activity, and indole-3-acetic acid/gibberellin production.  These mechanisms collectively enhance disease resistance and promote plant growth.  Moreover, TC959 demonstrates superior resistance to oxidation and chemical fungicides, facilitating strain viability maintenance and ensuring healthy pepper seedling development.  The study concludes that strain TC959 exhibits significant biocontrol potential and comprehensive functions against pepper damping-off disease, warranting further practical applications

.
Keywords:  biocontrol potential       disease resistance of plant        induced systemic resistance        inhabitation effects to phytopathogens        sensitivity to chemical fungicides        Trichoderma  
Received: 04 September 2023   Online: 02 March 2024   Accepted: 12 December 2023
Fund: This study was supported by the National Key Research and Development Program of China (2022YFC2303000).
About author:  WANG Heng-xu, E-mail: wanghx1127@163.com; Correspondence ZHUANG Wen-ying, Tel/Fax: +86-10-64807326, E-mail: zhuangwy@im.ac.cn

Cite this article: 

Hengxu Wang, Hao Hu, Tianyou Zhao, Zhaoqing Zeng, Wenying Zhuang. 2025. Trichoderma gamsii strain TC959 with comprehensive functions to effectively reduce seedling damping-off and promote growth of pepper by direct and indirect action mechanisms. Journal of Integrative Agriculture, 24(10): 3926-3940.

Aguiar R, Cunha M, Junior M L. 2014. Management of white mold in processing tomatoes by Trichoderma spp. and chemical fungicides applied by drip irrigation. Biological Control74, 1–5.

Bardo C, Matteo C, Sachie K, Danielle M S, Michael W, Gitta C. 2021. Stress-induced reactive oxygen species compartmentalization, perception and signaling. Nature Plants7, 403–412.

Biam M, Majumder D, Papang H. 2019. In vitro efficacy of native Trichoderma isolates against Pythium spp. and Rhizoctonia solani Kühn. causing damping-off disease in tomato (Solanum lycopersicum Miller). International Journal of Current Microbiology and Applied Sciences8, 566–579.

Campbell W G, Wei D, Kathryn R A. 2006. Apoptosis in yeast-mechanisms and benefits to a unicellular organism. Molecular Microbiology62, 1515–1521.

Chen K, Zhuang W Y. 2017. Three new soil-inhabiting species of Trichoderma in the Stromaticum clade with test of their antagonism to pathogens. Current Microbiology74, 1049–1060.

Contreras-Cornejo H A, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in ArabidopsisPlant Physiology149, 1579–1592.

Ding G, Wang H, Li L, Chen A J, Chen L, Chen H. 2012. Trichoderones A and B: Two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsiiEuropean Journal of Organic Chemistry2012, 2516–2519.

Ding P, Ding Y. 2020. Stories of salicylic acid: A plant defense hormone. Trends in Plant Science25, 549–565.

Fiume F, Fiume G. 2005. Biological control of Botrytis gray mould and Sclerotinia drop in lettuce. Communications in Agricultural and Applied Biological Sciences, 70, 157–168.

Ghosh S K, Panja A. 2021. Different mechanisms of signaling pathways for plant protection from diseases by fungi. In: Jogaiah S, ed., Biocontrol Agents and Secondary Metabolites. Woodhead Publishing, India. pp. 591–630.

Gilardi G, Vasileiadou A, Garibaldi A, Gullino M L. 2021. Biocontrol agents and resistance inducers reduce Phytophthora crown rot (Phytophthora capsici) of sweet pepper in closed soilless culture. Phytopathologia Mediterranea60, 149–163.

Hall T A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series41, 95–98.

Harman G E. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harziamum T-22. Plant Disease84, 377–393.

He X J, Zhu W W, Wu F Z. 2021. Effects of crop rotations on microbial community in rhizosphere soil of cucumber seedlings and its feedback. Allelopathy Journal52, 225–237.

Hoelzl G. 2019. Chloroplast lipids and their biosynthesis. Annual Review of Plant Biology70, 51–81.

Huang S B, Van Aken O, Schwarzlaender M, Belt K, Millar A H. 2016. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiology171, 1551–1559.

Islam M H, Masud M M, Jannat M, Hossain M I, Islam S, Alam M Z. 2022. Potentiality of formulated bioagents from lab to field: A sustainable alternative for minimizing the use of chemical fungicide in controlling potato late blight. Sustainability14, 1–22.

Jaklitsch W M, Samuels G J, Dodd S L, Lu B S, Druzhinina I S. 2006. Hypocrea rufa/Trichoderma viride: A reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology56, 135–177.

Jaklitsch W M, Voglmayr H. 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology80, 1–87.

Jin G C, Qi J F, Zu H Y, Liu S T, Gershenzon J, Lou Y G, Baldwin I T, Li R. 2023. Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice. Plant Cell, 35, 3828–3844.

Jing F, Zhang S W, Lui J, Xu B L. 2020. Optimization of the fermentation conditions of biocontrol agent Trichoderma longibrachiatum T6 and its efficiency against pepper blight. Chinese Journal of Biological Control36, 113–124. (in Chinese)

Jo E J, Kang B G, Jang K S, Choi Y H, Kim J C, Choi G J. 2014. Control efficacy of serenade formulation against Rhizoctonia and Pythium damping-off diseases. Research in Plant Disease20, 201–205.

Ketta H A, Hewedy E R. 2021. Biological control of Phaseolus vulgaris and Pisum sativum root rot disease using Trichoderma species. Egyptian Journal of Biological Pest Control31, 96–105.

Li N, Deng L Q, Li J F, Wang Z B, Han Y Y, Liu C L. 2018. Selective effect of myclobutanil enantiomers on fungicidal activity and fumonisin production by Fusarium verticillioides under different environmental condition. Pesticide Biochemistry and Physiology147, 102–109.

Lin Y, Lin H, Lin Y, Zhang S, Chen Y, Jiang X. 2016. The roles of metabolism of membrane lipids and phenolics in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biology and Technology111, 53–61.

Liu J L, Wang L H, Li J Q, Liu R. 2012. The correlation of SPAD, chlorophyll content and protein content in 10 ryegrass varieties. Chinese Agricultural Science Bulletin28, 83–86.

Liu M, Lu Z J, Wang W J, Zheng J Q, Huang J S, Wu X H. 2010. Effect of the crude toxin from seedborne Fusarium oxysporum on seed germination and seedlings of cabbage. Journal of China Agricultural University15, 63–69. (in Chinese)

Lolle S, Stevens D, Coaker G. 2020. Plant NLR-triggered immunity: From receptor activation to downstream signaling. Current Opinion in Immunology62, 99–105.

Maji E A, Shaibu A A. 2012. Effects of antibiotics on biological control agents and their efficacy to control rice sheath blight (Rsolani AG-I.1). International Journal of Agricultural Technology8, 993–997.

Mittler V, Songy A, Battiston E, Catia P, Cindy C, Patricia T A, Christophe C, Laura M, Florence F. 2017. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease102, 1189–1217.

Mojica-Marín V, Luna-Olvera H A, Sandoval-Coronado C F, Pereyra-Alférez B, Alvarado-Gomez O G. 2008. Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper. African Journal of Biotechnology7, 1271–1276.

Nai Y S, Lee M R, Kim S, Lee S J, Kim J S. 2017. Relationship between expression level of hygromycin B-resistant gene and Agrobacterium tumefaciens-mediated transformation efficiency in Beauveria bassiana JEF-007. Journal of Applied Microbiology123, 724–731.

Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biolog and Evolution32, 268–274.

Page R D. 1996. TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences12, 357–358.

De Palma M, Docimo T, Guida G, Salzan M, Tucci M. 2021. Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato. Environmental and Experimental Botany206, 104588.

Pang K, Dong S, Hao P, Chen T, Wang X, Yu X. 2020. Fungicides reduce the abundance of yeast-like symbionts and survival of white-backed planthopper Sogatella furcifera (Homoptera: Delphacidae). Insects11, 209.

Parrilli M, Sommaggio D, Tassini C, Marco S D, Burgio G. 2019. The role of Trichoderma spp. and silica gel in plant defense mechanisms and insect response in a vineyard. Bulletin of Entomological Research109, 1–10.

Rinu K, Sati P, Pandey A. 2014. Trichoderma gamsii (NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. Journal of Basic Microbiology54, 408–417.

Roghayeh N, Reza D, Khadijeh M K, Masoud A, Hadi A. 2018. Retrotransposonable regions of sunflower genome having relevance with resistance to Sclerotinia species: Ssclerotiorum and SminorAustralasian Plant Pathology47, 511–519.

Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19, 1572–1574.

Salas-Marina M A, Silva-Flores M A, Uresti-Rivera E E, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S. 2011. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology131, 15–26.

Shahid M. 2014. Biocontrol mechanisms by Trichoderma through genomics and proteomics analysis: A review. African Journal of Microbiology Research8, 3064–3069.

Stummer B E, Zhang X, Yang H, Harvey P. 2021. Co-inoculation of Trichoderma gamsii A5MH and Trichoderma harzianum Tr906 in wheat suppresses in planta abundance of the crown rot pathogen Fusarium pseudograminearum and impacts the rhizosphere soil fungal microbiome. Biological Control165, 104809.

Susilowati A, Wahyudi A T, Lestari Y, Suwanto A, Wiyono S. 2011. Potential Pseudomonas isolated from soybean rhizosphere as biocontrol against soilborne phytopathogenic fungi. Hayati Journal of Biosciences18, 51–56.

Triantafyllou A, Kamou N, Papadopoulou A, Leontidou K, Mellidou I, Karamanoli K. 2023. Evaluation of the biocontrol potential of PGPB strains isolated from drought-tolerant tomatoes against fungal pathogens. Journal of Plant Pathology105, 1013–1029.

Vlot A C, Sales J H, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y Y, Wenig M, Nayem S. 2021. Systemic propagation of immunity in plants. New Phytologist229, 1234–1250.

Wang C, Zhuang W Y. 2019. Evaluating effective Trichoderma isolates for biocontrol of Rhizoctonia solani causing root rot of Vigna unguiculataJournal of Integrative Agriculture18, 132–139.

Wang F H, Zhu L S, Lv D D, Guo P P, Wang J, Wang J H. 2015. Effects of azoxystrobin on soil micro-organisms and enzymatic activities. Fresenius Environmental Bulletin24, 3336–3343.

Wang G J, Zeng F L, Song P, Sun B, Wang Q, Wang J Y. 2022. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves, Journal of Plant Physiology272, 153669.

Wang H X, Wang Z G, Liu Z P, Wang K X, Xu W H. 2020. Membrane disruption of Fusarium oxysporum f. sp. niveum induced by myriocin from Bacillus amyloliquefaciens LZN01. Microbial Biotechnology14, 517–534.

Wang H X, Wang Z G, Xu W H, Wang K X. 2021. Comprehensive transcriptomic and proteomic analyses identify intracellular targets for myriocin to induce Fusarium oxysporum f. sp. niveum cell death. Microbial Cell Factories20, 69–84.

Yilmaz K, Akinci I E, Akinci S. 2004. Effect of salt stress on growth and Na, K contents of pepper (Capsicum annuum L.) in germination and seedling stages. Pakistan Journal of Biological Sciences7, 293–301.

Yu Y, Cai J S, Ma L H, Huang Z Q, Wang Y B, Fang A F, Yang Y H, Qing L, Bi C W. 2020. Population structure and aggressiveness of Sclerotinia sclerotiorum from rapeseed (Brassica napus) in Chongqing city. Plant Disease104, 1201–1206.

Zeng Z Q, Zhuang W Y. 2022. New species of Nectriaceae (Hypocreales) from China. Journal of Fungi8, 1075.

Zhang C, Wang W, Xue M, Liu Z, Zhang Q, Hou J. 2021. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea. Journal of Fungi7, 685.

Zhang H C, Ge Y F, Xie X Y, Atefi A, Wijewardane N K, Thapa S. 2022. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods18, 60.

Zhang W, Yang J Y, Lv X, Lin J M, Niu X L. 2021. A preliminary study of the antifungal activity and antagonism mechanisms of Trichoderma spp. against turfgrass pathogens. Acta Prataculturae Sinica30, 137–149. (in Chinese)

Zhang X H, Li X, Li H N, Wang Z R, Xia R, Hu J, Wang P F, Zhou X M, Wan L L, Hong D F, Yang G S. 2022. Quantitative trait locus mapping and improved resistance to sclerotinia stem rot in a backbone parent of rapeseed (Brassica napus L.). Frontiers in Plant Science13, 1056206.

Zhang Y, Li Y, Hassan M J, Li Z, Peng Y. 2020. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology20, 150.

Zhang Y, Zhuang W Y. 2019. Trichoderma brevicrassum strain TC967 with capacities of diminishing cucumber disease caused by Rhizoctonia solani and promoting plant growth. Biological Control142, 104151.

Zhang Y, Zhuang W Y. 2022. MAPK cascades mediating biocontrol activity of Trichoderma brevicrassum strain TC967. Journal of Agricultural and Food Chemistry70, 2762–2775.

Zhang Y B, Zhuang W Y. 2017. First step evaluation of Trichoderma antagonism against plant pathogenic fungi in dual culture. Mycosystema36, 1251–1259.

Zhu Z X, Zhuang W Y. 2015. Trichoderma (Hypocrea) species with green ascospores from China. Persoonia34, 113–129.

No related articles found!
No Suggested Reading articles found!