Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2046-2062    DOI: 10.1016/j.jia.2024.01.023
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)

Chunxiang Li1*, Yongfeng Song1*, Yong Zhu1, Mengna Cao1, Xiao Han1, Jinsheng Fan2, Zhichao Lü1, Yan Xu1, Yu Zhou1, Xing Zeng1, Lin Zhang1, Ling Dong1, Dequan Sun2, Zhenhua Wang1#, Hong Di1#

1 College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education/Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold Land of Heilongjiang Province, Harbin 150030, China

2 Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

 Highlights 
● Genome-wide association analysis was performed to identify new loci for density tolerance (ear leaf structure) in maize.
● The gene Zm00001d008651 regulating maize density tolerance by ear and leaf structure was excavated.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

种植密度是影响玉米产量的主要限制因素,培育耐密植品种已成为玉米生产中亟待解决的问题。玉米穗叶的叶片结构是制约玉米种植密度和产量构成的主要因素。本研究利用201个玉米自交系自然群体进行全基因组关联分析,在染色体2、5、8、9和10上鉴定出9个与穗叶型结构显著相关的SNP。qRT-PCR进一步验证了5个候选基因与这些SNP的关联,其中Zm00001d008651基因在紧凑型和扁平型玉米自交系中表现出显著的表达差异, GO和KEGG富集分析表明该基因参与糖酵解过程。该基因的基本特性分析表明,其编码一种由593个氨基酸组成的稳定的碱性蛋白,具有一定的疏水性。启动子区域包含与应激和激素(ABA)相关的元件。该基因突变体穗位叶的叶角和穗下第一片叶的叶角分别比野生型增加了4.96°和0.97°。本研究揭示了玉米穗叶结构对密度耐受性的调控机制,为培育新品种提供了坚实的基础。



Abstract  

Planting density is a major limiting factor for maize yield, and breeding for density tolerance has become an urgent issue.  The leaf structure of the maize ear leaf is the main factor that restricts planting density and yield components.  In this study, a natural population of 201 maize inbred lines was used for genome-wide association analysis, which identified nine SNPs on chromosomes 2, 5, 8, 9, and 10 that were significantly associated with ear leaf type structure.  Further verification through qRT-PCR confirmed the association of five candidate genes with these SNPs, with the Zm00001d008651 gene showing significant differential expression in the compact and flat maize inbred lines.  Enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases suggested that this gene is involved in the glycolysis process.  An analysis of the basic properties of this gene revealed that it encodes a stable, basic protein consisting of 593 amino acids with some hydrophobic properties.  The promoter region contains stress and hormone (abscisic acid (ABA)) related elements.  The mutant of this gene increased the first ear leaf angle (eLA) and leaf angle of the first leaf below the first ear (bLA) by 4.96 and 0.97°, respectively, compared with normal inbred lines.  Overall, this research sheds light on the regulatory mechanism of ear and leaf structures that influence density tolerance and provides solid foundational work for the development of new varieties.

Keywords:  maize       planting density        ear leaf structure        GWAS        candidate genes  
Received: 18 August 2023   Online: 15 January 2024   Accepted: 12 December 2023
Fund: This study was supported by the Key Research and Development Project of Heilongjiang Province, China (2022ZX02B01).  
About author:  Chunxiang Li, E-mail: lcx990127@163.com; Yongfeng Song, E-mail: song18182746326@163.com; #Correspondence Zhenhua Wang, Tel: +86-451-55190021, E-mail: zhenhuawang_2006@163.com; Hong Di, Tel: +86-451-55190202, E-mail: dihongdh@163.com * These authors contributed equally to this study.

Cite this article: 

Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. 2025. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.). Journal of Integrative Agriculture, 24(6): 2046-2062.

Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics23, 2633–2635.

Cao Y, Zeng H, Ku L, Ren Z, Han Y, Su H, Dou D, Liu H, Dong Y, Zhu F, Li T, Zhao Q, Chen Y. 2020. ZmIBH1-1 regulates plant architecture in maize. Journal of Experimental Botany71, 2943–2955.

Chen X N, Xu D, Liu Z, Yu T T, Mei X P, Cai Y L. 2015. Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays L.). Euphytica204, 395–405.

Ding J Q, Zhang L Y, Chen J F, Li X T, Li Y M, Cheng H L, Huang R R, Zhou B, Li Z M, Wang J K, Wu J Y. 2015. Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping Population. PLoS ONE10, e0141619.

Donald C M. 1968. The breeding of crop ideotypes. Euphytica17, 385–403.

Duan H Y, Li J X, Sun Y, Xiong X H, Sun L, Li W L, Gao J H, Li N, Zhang J L, Cui J K, Fu Z Y, Zhang X H, Tang J H. 2022. Candidate loci for leaf angle in maize revealed by a combination of genome-wide association study and meta-analysis. Frontiers in Genetics13, 4211.

Duvick D N, Smith J S C, Cooper M. 2004. Long-term selection in a commercial hybrid maize breeding program. Plant Breeding Reviews. Wiley-Blackwell, USA. pp. 109–151.

Dzievit M J, Li X R, Yu J M. 2019. Dissection of leaf angle variation in maize through genetic mapping and meta analysis. The Plant Genome12, 180024.

Earl D A, vonHoldt B M. 2011. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources4, 359–361.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology14, 2611–2620.

Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. 2008. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics279, 499–507.

Guo J, Li C H, Zhang X Q, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Yang D G, Wang T Y. 2020. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Science292, 110380.

Guo T, Ting, Wang D F, Fang J J, Zhao J F, Yuan S J, Xiao L T, Li X Y. 2019. Mutations in the rice OsCHR4 gene, encoding a CHD3 family chromatin remodeler, induce narrow and rolled leaves with increased cuticular wax. International Journal of Molecular Sciences20, 2567.

Haley C. 2011. A cornucopia of maize genes. Nature Genetics43, 82–88.

Harper L, Freeling M. 1996. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics144, 1871–1882.

Hu J, Ren B, Zhao, Dong S T, Liu P, Zhao B, Zhang J W. 2020. Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. BMC Plant Biology20, 44.

Jiang D, Fang J J, Lou L M, Zhao J F, Yuan S J, Yin L, Sun W, Peng L X, Guo B T, Li X Y. 2015. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS ONE10, e0118169.

Ku L X, Zhang J, Guo S L, Liu H Y, Zhao R F, Chen Y H. 2012. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). Journal of Experimental Botany63, 261–274.

Ku L X, Zhao W M, Zhang J, Wu L C, Wang C L, Wang P A, Zhang W Q, Chen Y H. 2010. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theoretical and Applied Genetics121, 951–959.

Li C H, Li Y X, Shi Y S, Song Y C, Zhang D F, Buckler E S, Zhang Z W, Wang T Y, Li Y. 2015. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE10, e0121624.

Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, Chen J F, Wu J Y. 2016. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in Plant Science7, 833.

Liang Z J, Xi N, Liu H, Liu P, Xiang C C, Zhang C, Zou C Y, Cheng X Y, Yu H, Zhang M Y, Chen Z, Pan G T, Yuan G S, Gao S B, Ma L L, Shen Y O. 2022. An integration of linkage mapping and GWAS reveals the key genes for ear shank length in maize. International Journal of Molecular Sciences23, 15073.

Liu C L, Hao Z F, Zhang D G, Xie C X, Li M S, Zhang X C, Yong H J, Zhang S H, Weng J F, Li X H. 2015. Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density SNP markers. Molecular Breeding35, 146.

Lu S, Li M, Zhang M, Lu M, Wang X Q, Wang P W, Liu W G. 2020. Genome-wide association study of plant and ear height in maize. Tropical Plant Biology13, 262–273.

Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. 2018. Gene-indexed mutations in maize. Molecular Plant11, 496–504.

Ma L L, Zhang M Y, Chen J, Qing C Y, He S J, Zou C Y, Yuan G S, Yang C, Peng H, Pan G T, Lübberstedt T, Shen Y O. 2021. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theoretical and Applied Genetics134, 3305–3318.

Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. 2012. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE7, e30798.

Mickelson S M, Stuber C S, Senior L, Kaeppler S M. 2002. Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Science42, 1902–1909.

Mock J J, Pearce R B. 1975. An ideotype of maize. Euphytica24, 613–623.

Moreno M A, Harper L C, Krueger R W, Dellaporta S L, Freeling M. 1997. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development11, 616–628.

Moussa A A, Mandozai A, Jin Y, Qu J, Zhang Q, Zhao H, Anwari G, Khalifa M A S, Lamboro A, Noman M, Bakasso Y, Zhang M, Guan S Y, Wang P W. 2021. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages. BMC Genomics22, 558.

Nolan T, Hands R E, Bustin S A. 2006. Quantification of mRNA using real-time RT-PCR. Nature Protocols1, 1559–1582.

Orhun G E. 2013. Maize for life. International Journal of Food Science & Nutrition Engineering3, 13–16.

Pendleton J W, Smith G E, Winter S R, Johnston T J. 1968. Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agronomy Journal60, 422–424.

Pepper G E, Pearce R B, Mock J J. 1977. Leaf orientation and yield of maize. Crop Science17, 883–886.

Ren Z, Wu L, Ku L, Wang H, Zeng H, Su H, Wei L, Dou D, Liu H, Cao Y, Zhang D, Han S, Chen Y. 2019. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. Plant Biotechnology Journal18, 881–883.

Saidou M, Zhang Z Y. 2022. The L-type lectin-like receptor kinase gene TaLecRK-IV.1 regulates the plant height in wheat. International Journal of Molecular Sciences23, 8208.

Sha X Q, Guan H H, Zhou Y Q, Su E H, Guo J, Li Y X, Zhang D F, Liu X Y, He G H, Li Y, Wang TY, Zou H W, Li C H. 2023. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture22, 3394–3407.

Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics43, 159–162.

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science365, 658–664.

Ventura I, Brunello L, Iacopino S, Valeri M C, Novi G, Dornbusch T, Perata P, Loreti E. 2020. Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Scientific Reports10, 16669.

Walsh J, Waters C A, Freeling M. 1998. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development12, 208–218.

Wang B B, Lin Z C, Li X, Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang H, Xie Y R, Li Q R, Song G S, Kong D X, Zheng Z G, Wei H B, Shen R X, Wu H, Chen C X, Meng Z D, Wang T Y, et al. 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics52, 565–571.

Wang H M, Wei J, Li P C, Wang Y Y, Ge Z Z, Qian J Y, Fan Y Y, Ni J R, Xu Y, Yang Z F, Xu C W. 2019. Integrating GWAS and gene expression analysis identifies candidate genes for root morphology traits in maize at the seedling stage. Genes10, 773.

Wang H W, Liang Q J, Li K, Hu X J, Wu Y J, Wang H, Liu Z, Huang C L. 2017. QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. The Crop Journal5, 387–395.

Wang S B, Xu S, Chao S M, Sun Q, Liu S W, Xia G M. 2019. A genome-wide association study of highly heritable agronomic traits in durum wheat. Frontiers in Plant Science10, 919.

Wang X, Wang X, Sun S, Tu X, Lin K, Qin L, Wang X, Li G, Zhong S, Li P. 2022. Characterization of regulatory modules controlling leaf angle in maize. Plant Physiology190, 500–515.

Wassom J J. 2013. Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L.) B73 × Mo17 population. Maydica58, 318–321.

Weng J F, Xie C X, Hao Z F, Wang J J, Liu C L, Li M S, Zhang D G, Bai L, Zhang S H, Li X H. 2011. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE6, e29229.

Wu J H, Feng F J, Lian X M, Teng X Y, Wei H B, Yu H H, Xie W B, Yan M, Fan P Q, Li Y, Ma X S, Liu H Y, Yu S B, Wang G W, Zhou F S, Luo L J, Mei H W. 2015. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biology15, 218.

Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell12, 1591.

Yan J B, Warburton M, Crouch J. 2011. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Science51, 433–449.

Yang G H, Dong Y B, Li Y L, Wang Q L, Shi Q L, Zhou Q. 2015. Integrative detection and verification of QTL for plant traits in two connected RIL populations of high-oil maize. Euphytica206, 203–223.

Yang Y, Ma Y T, Liu Y Y, Lyle D, Li D D, Wang P X, Xu J L, Zhen S H, Lu J W, Peng Y L, Cui Y, Fu J J, Du W L, Zhang H W, Wang J H. 2022. Dissecting the genetic basis of maize deep-sowing tolerance by combining association mapping and gene expression analysis. Journal of Integrative Agriculture21, 1266–1277.

Zhang H, Zhang J Y, Xu Q Y, Wang D D, Di H, Huang J, Yang X W, Wang Z F, Zhang L, Dong L, Wang Z H, Zhou Y. 2020. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biology20, 333.

Zhang J, Ku L X, Han Z P, Guo S L, Liu H J, Zhang Z Z, Cao L R, Cui X J, Chen Y H. 2014. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Journal of Experimental Botany65, 5063–5076.

Zhang S N, Wang S K, Xu Y X, Yu C L, Shen C J, Qian Q, Geisler M, Jiang D A, Qi Y H. 2015. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3–5 and OsBRI1Plant, Cell & Environment38, 638–654.

Zhang X H, Liu H, Ma X H, Zhou G Y, Ruan H Q, Cui H W, Pang J L, Khan U S, Zong N, Wang R Z, Leng P F, Zhao J. 2022. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density. Journal of Integrative Agriculture21, 3514–3523.

Zhao X, Fang P, Zhang J, Peng Y, Lübberstedt T. 2018. QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breeding137, 60–72.

Zheng C Y, Yu Y, Deng G L, Li H J, Li F Q. 2022. Network and evolutionary analysis reveals candidate genes of membrane trafficking involved in maize seed development and immune response. Frontiers in Plant Science13, 3961.

Zheng Y X, Yuan F, Huang Y Q, Zhao Y F, Jia X Y, Zhu L Y, Guo J J. 2021. Genome-wide association studies of grain quality traits in maize. Scientific Reports11, 9797.

[1] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[2] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[3] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[4] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[5] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[6] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[7] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[8] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[9] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[10] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[11] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[12] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

[13] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[14] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[15] Cheng Guo, Xiaojie Zhang, Baobao Wang, Zhihuan Yang, Jiping Li, Shengjun Xu, Chunming Wang, Zhijie Guo, Tianwang Zhou, Liu Hong, Xiaoming Wang, Canxing Duan.

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China [J]. >Journal of Integrative Agriculture, 2024, 23(3): 888-900.

No Suggested Reading articles found!