Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1140-1151    DOI: 10.1016/j.jia.2023.11.026
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
TEGR: A comprehensive Ericaceae genome resource database

Xiaojing Wang1*, Yunfeng Wei1*, Zhuo Liu2*, Tong Yu2*, Yanhong Fu2, Xiaoming Song2# 

1 Institute of Agro-Bioengineering/The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education)/College of Life Sciences, Guizhou University, Guiyang 550025, China

2 School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China

 Highlights 
The Ericaceae Genome Resource (TEGR) database was constructed based on 16 published Ericaceae genomes. 
TEGR database contains important information of various types, including functional genes, m6A modification genes, and CRISPR guide sequences. 
TEGR database contains 614,821 functional genes annotated by GO, Nr, Pfam, TrEMBL, and Swiss-Prot databases. 
TEGR database provides the Primer Design, Hmmsearch, Synteny, BLAST, and JBrowse tools for comparative genomic analyses. 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

杜鹃花科是一个分布在世界各地的开花植物群,包括126属和4000个物种。在本研究中,我们搭建一个杜鹃花科基因组资源数据库(TEGR, http://www.tegr.com.cn),这是一个基于16杜鹃花科物种已发表基因组的综合性、用户友好的基于web的功能基因组数据库。TEGR数据库包含大量重要的功能基因,生长素基因763个,开花基因2,407个,抗基因20,432个,花青素相关基因617个,N6-甲基腺苷修饰基因470个。TEGR数据库中包含鉴定的599,174条特异的CRISPR引导序列。在TEGR数据库中对16杜鹃花科物种进行了基因复制事件、共线性分析和同源性分析。TEGR数据库包含通过GONrPfamTrEMBLSwiss-Prot数据库注释的614,821个功能基因。TEGR数据库提供Primer DesignHmmsearchSyntenyBLASTJBrowse工具,帮助用户进行全面的比较基因组分析。所有高质量的参考基因组序列、基因组特征、基因注释和生物信息分析结果都可以从TEGR数据库下载。在未来,随着新基因组数据的出现,我们将继续完善更新TEGR数据库,为比较基因组学研究提丰富的数据资源。



Abstract  
Ericaceae is a diverse family of flowering plants distributed nearly worldwide, and it includes 126 genera and more than 4,000 species.  In the present study, we developed The Ericaceae Genome Resource (TEGR, ) as a comprehensive, user-friendly, web-based functional genomic database that is based on 16 published genomes from 16 Ericaceae species.  The TEGR database contains information on many important functional genes, including 763 auxin genes, 2,407 flowering genes, 20,432 resistance genes, 617 anthocyanin-related genes, and 470 N6-methyladenosine (m6A) modification genes.  We identified a total of 599,174 specific guide sequences for CRISPR in the TEGR database.  The gene duplication events, synteny analysis, and orthologous analysis of the 16 Ericaceae species were performed using the TEGR database.  The TEGR database contains 614,821 functional genes annotated through the GO, Nr, Pfam, TrEMBL, and Swiss-Prot databases.  The TEGR database provides the Primer Design, Hmmsearch, Synteny, BLAST, and JBrowse tools for helping users perform comprehensive comparative genome analyses.  All the high-quality reference genome sequences, genomic features, gene annotations, and bioinformatics results can be downloaded from the TEGR database.  In the future, we will continue to improve the TEGR database with the latest data sets when they become available and to provide a useful resource that facilitates comparative genomic studies.


Keywords:  TEGR       Ericaceae        gene functional annotation        m6A        CRISPR        bioinformatic tools  
Received: 24 September 2023   Accepted: 13 October 2023
Fund: This work was supported by the National Natural Science Foundation of China (32260097) and the National Guidance of Local Science and Technology Development Fund of China ([2023]009).
About author:  #Correspondence Xiaoming Song, Tel/Fax: +86-315-8805607, E-mail: songxm@ncst.edu.cn *These authors contributed equally to this study.

Cite this article: 

Xiaojing Wang, Yunfeng Wei, Zhuo Liu, Tong Yu, Yanhong Fu, Xiaoming Song. 2025. TEGR: A comprehensive Ericaceae genome resource database. Journal of Integrative Agriculture, 24(3): 1140-1151.

Ancillotti C, Ciofi L, Pucci D, Sagona E, Giordani E, Biricolti S, Gori M, Petrucci W A, Giardi F, Bartoletti R, Chiuminatto U, Orlandini S, Mosti S, Bubba M D. 2016. Polyphenolic profiles and antioxidant and antiradical activity of Italian berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) SB Young. Food Chemistry204, 176–184.

Bouche F, Lobet G, Tocquin P, Perilleux C. 2016. FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thalianaNucleic Acids Research44, D1167–D1171.

Carbon S, Douglass E, Good B M, Unni D R, Elser J. 2020. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Research49, D325–D334.

Chen C, Chen H, Zhang Y, Thomas H R, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen H, Wang T, He X, Cai X, Lin R, Liang J, Wu J, King G, Wang X. 2022. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Research50, D1432–D1441.

Cheng J, Zhao Z, Li B, Qin CWu ZTrejo-Saavedra DLuo XCui JRivera-Bustamante R F, Li SHu K. 2016. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Science Report6, 18919.

de la Concepción M C, Concepción M, Sargent D J, Šurbanovski N, Colgan R J, Moretto M. 2021. De novo sequencing and analysis of the transcriptome of two highbush blueberry (Vaccinium corymbosum L.) cultivars ‘Bluecrop’ and ‘Legacy’ at harvest and following post-harvest storage. PLoS ONE16, e0255139.

Debnath S C, Goyali J C. 2020. In vitro propagation and variation of antioxidant properties in micropropagated Vaccinium berry plants - A review. Molecules25, 788.

Diaz-Garcia L, Rodriguez-Bonilla L, Rohde J, Smith T, Zalapa J. 2019. Pacbio sequencing reveals identical organelle genomes between American cranberry (Vaccinium macrocarpon Ait.) and a wild relative. Genes10, 291.

El-Tantawy A A, Xie W, Li S, Wang J, Yang X. 2020. Changes of endogenous hormones during ovary development in Rhododendron delavayi×Rhododendron sinofalconeri and Rhododendron delavayi×Rhododendron cyanocarpumEuropean Journal of Horticultural Sciences85, 248–257.

Emms D M, Kelly S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology20, 238.

Engelbrecht F A, Marean C W, Cowling R M, Engelbrecht C J, Neumann F H, Scott L, Ramapulana N, O’Neal D, Fisher E, Shook E, Franklin J, Thatcher M, McGregor J L, Van der M J, Dedekind Z, Difford M. 2019. Downscaling Last Glacial Maximum climate over southern Africa. Quaternary Science Reviews226, 105879.

Feng S, Liu Z, Chen H, Li N, Yu T, Zhou R, Nie F, Guo D, Ma X, Song X. 2024. PHGD: An integrative and user-friendly database for plant hormone-related genes. iMeta3, e164.

Garrison R R, Tobin P C. 2022. Susceptibility of Rhododendron to Azalea Lace Bug, Stephanitis pyrioides (Scott). Journal of Environmental Horticulture40, 94–102.

Giannoulatou E, Park S H, Humphreys D T, Ho J W K. 2014. Verification and validation of bioinformatics software without a gold standard: A case study of BWA and Bowtie. BMC Bioinformatics15, 1–8.

Gill S, Panthari P, Kharkwal H. 2015. Phytochemical investigation of high altitude medicinal plants Cinnamomum tamala (Buch-Ham) Nees and Eberm and Rhododendron arboreum Smith. American Journal of Clinical Dermatology3, 512–528.

Humann J L, Cheng C H, Lee T, Buble K, Jung S, Yu J, Zheng P, Hough H, Crabb J, Frank M. 2021. Using the Genome Database for Vaccinium for genetics, genomics, and breeding research. XII International Vaccinium Symposium1357, 115–122.

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. 2021. The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy6, 74.

Jones M S, Vanhanen H, Peltola R, Drummond F. 2014. A global review of arthropod-mediated ecosystem-services in Vaccinium berry agroecosystems. Terrestrial Arthropod Reviews7, 41–78.

Krebs S L. 2018. RhododendronOrnamental Crops11, 673–718.

Kumar V, Suri S, Prasad R, Gat Y, Sangma C, Jakhu H, Sharma M. 2019. Bioactive compounds, health benefits and utilization of Rhododendron: A comprehensive review. Agriculture Food Security8, 1–7.

Li H, Fan Y, Yu J, Chai L, Zhang J, Jiang J, Cui C, Zheng B, Jiang L, Kun L. 2018. Genome-wide identification of flowering-time genes in Brassica species and reveals a correlation between selective pressure and expression patterns of vernalization-pathway genes in Brassica napusInternational Journal of Molecular Sciences19, 3632.

Li H, Guo Q, Li Q, Yang L. 2020. Long-reads reveal that Rhododendron delavayi plastid genome contains extensive repeat sequences, and recombination exists among plastid genomes of photosynthetic Ericaceae. PeerJ8, e9048.

Li P, Quan X, Jia G, Xiao J, Cloutier S, Frank M. 2016. RGAugury: A pipeline for genomewide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics17, 852.

Liu N, Zhang L, Zhou Y, Tu M, Wu Z, Gui D, Ma Y, Wang J, Zhang C. 2012. The Rhododendron Plant Genome Database (RPGD): A comprehensive online omics database for RhododendronBMC Genomics22, 1–10.

Liu Q, Liaquat F, He Y, Munis M F H, Zhang C. 2021. Functional annotation of a full-length transcriptome and identification of genes associated with flower development in Rhododendron simsii (Ericaceae). Plants10, 649.

Liu Z, Li N, Yu T, Wang Z, Wang J, Ren J, He J, Huang Y, Shi K, Yang Q, Wu T, Lin H, Song X. 2022. The Brassicaceae genome resource (TBGR): A comprehensive genome platform for Brassicaceae plants. Plant Physiology190, 226–237.

Liu Z, Shen S, Li C, Zhang C, Chen X, Fu Y, Yu T, Zhou R, Liu D, Yang Q, Song X. 2024. SoIR: a comprehensive Solanaceae information resource for comparative and functional genomic study. Nucleic Acids Research2024, gkae1040.

Martau G A, Bernadette-Emőke T, Odocheanu R, Soporan D A, Bochis M, Simon E, Vodnar D C. 2023. Vaccinium species (Ericaceae): Phytochemistry and biological properties of medicinal plants. Molecules28, 1533.

Meng F, Tang Q, Chu T, Li X, Lin Y, Song X, Chen W. 2022. TCMPG: An integrative database for traditional Chinese medicine plant genomes. Horticulture Research9, uhac060.

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research49, D412–D419.

Pandey T, Kumar P, Pratap O, Jyoti B, Singh I, Kumar V, Gusain Y S, Chaudhary S. 2019. A marvelous hide and speculation in the life of Rhododendron species at a glance. International Journal of Conservation Science, 7, 3158–3168.

Rodriguez-Bonilla L, Williams K A, Bonilla F R, Matusinec D, Maule A, Coe K, Wiesman E, Diaz-Garcia L, Zalapa J. 2020. The genetic diversity of cranberry crop wild relatives, Vaccinium macrocarpon Aiton and Voxycoccos L., in the US, with special emphasis on National Forests. Plants9, 1446.

Rose A E S, Senthilkumar S. 2016. Studies on the mycorrhizal association of Rhododendron arboreum Sm. ssp nilagiricum (Zenker) Tagg. Tropical Ecology57, 69–76.

Rose J P, Kleist T J, Löfstrand S D, Drew B T, Schoenenberger J, Sytsma K J. 2018. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Molecular Phylogenetics and Evolution122, 59–79.

Sekhwal M K, Li P, Lam I, Wang X, Cloutier S, Frank M. 2015. Disease resistance gene analogs (RGAs) in plants. International Journal of Molecular Sciences16, 19248–19290.

Shinde H, Dudhate A, Kadam U S, Chan J. 2023. RNA methylation in plants: An overview. Frontiers in Plant Science14, 1132959.

Song X, Yang Q, Bai Y, Gong K, Ma X. 2021. Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants. Horticulture Research8, 122.

Sosnovsky Y, Nachychko V, Prokopiv A, Honcharenko V. 2017. Leaf architecture in Rhododendron subsection Rhododendron (Ericaceae) from the Alps and Carpathian Mountains: Taxonomic and evolutionary implications. Flora230, 26–38.

Soza V L, Lindsley D, Waalkes A, Ramage EPatwardhan RBurton JAdey AKumar AQiu RShendure JHall B. 2019. The Rhododendron genome and chromosomal organization provide insight into shared whole-genome duplications across the heath family (Ericaceae). Genome Biology and Evolution11, 3353–3371.

Tian X, Chang Y, Neilsen J, Wang S, Ma Y. 2019. A new species of Rhododendron (Ericaceae) from northeastern Yunnan. China Phytotaxa395, 66–70.

Tundis R, Tenuta M C, Loizzo M R, Bonesi M, Finetti F, Trabalzini L, Deguin B. 2021. Vaccinium species (Ericaceae): From chemical composition to bio-functional activities. Applied Sciences11, 5655.

Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Tae-ho L, Jin H, Barry M, Guo H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research40, e49.

Wu T, Feng S, Yang Q, Preetidt J, Gong K, Cui C, Song J, Ping X, Pei Q, Yu T, Song X. 2021. Integration of metabolome and transcriptome reveals the metabolites or genes related to nutritional and medicinal value in Coriandrum sativumJournal of Integrative Agriculture20, 1807–1818.

Wu T, Liu Z, Yu T, Zhou R, Yang Q, Cao R, Nie F, Ma X, Bai Y, Song X. 2024. Flowering genes identification, network analysis, and database construction for 837 plants. Horticulture Research11, uhae013.

Xiao Z, Su J, Sun X, Li C, He L, Cheng S, Liu X. 2018. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Genes Genomic40, 591–601.

Yu T, Bai Y, Liu Z, Wang ZYang QWu TFeng SZhang YShen SLi QGu LSong X. 2022a. Large-scale analyses of heat shock transcription factors and database construction based on whole-genome genes in horticultural and representative plants. Horticulture Research9, uhac035.

Yu T, Ma X, Liu Z, Feng X, Wang Z, Ren J, Cao R, Zhang Y, Nie F, Song X. 2022b. TVIR: A comprehensive vegetable information resource database for comparative and functional genomic studies. Horticulture Research9, uhac213.

Yang Y, Hsu P J, Chen Y S, Yang Y G. 2018. Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Research28, 616–624.

Zhang Y, Zhang Y, Li B, Tan X, Zhu C, Wu T, Feng S, Yang Q, Shen S, Yu T, Liu Z, Song X. 2022. Polyploidy events shaped the expansion of transcription factors in Cucurbitaceae and exploitation of genes for tendril development. Horticultural Plant Journal8, 562–574.

[1] Jun Cao, Jinliang Wang, Guanghui Dang, Shihao Ding, Yao Lu, Qiu Xu, Siguo Liu, Shenye Yu. Salmonella YrbD protein mediates invasion into the host by interacting with β2 integrin[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1181-1197.
[2] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[3] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[4] Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3610-3621.
[5] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[6] XU Yong-mei, QIAO Fang-bin, HUANG Ji-kun. Black tea markets worldwide: Are they integrated?[J]. >Journal of Integrative Agriculture, 2022, 21(2): 552-565.
[7] ZHAN Bin-hui, YANG Xiu-ling, Steven A. LOMMEL, ZHOU Xue-ping. Recent progress in maize lethal necrosis disease: from pathogens to integrated pest management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3445-3455.
[8] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[9] ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. Integrated pest management programme for cereal blast fungus Magnaporthe oryza[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3420-3433.
[10] DONG Suo-meng, ZHOU Shao-qun. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3456-3466.
[11] YU Ning-ning, ZHANG Ji-wang, LIU Peng, ZHAO Bin, REN Bai-zhao. Integrated agronomic practices management improved grain formation and regulated endogenous hormone balance in summer maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1768-1776.
[12] Andrew GALIMBERTI, Andrei ALYOKHIN, Hongchun QU, Jason ROSE .
Simulation modelling of potato virus Y spread in relation to initial inoculum and vector activity
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 376-388.
[13] YAN Jun-jie, Shovon Chandra SARKAR, MENG Rui-xia, Stuart REITZ, GAO Yu-lin.
Potential of Steinernema carpocapsae (Weiser) as a biological control agent against potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae)
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 389-393.
[14] LU Yuan-yuan, LIU Feng, ZHAO Yu-guo, SONG Xiao-dong, ZHANG Gan-lin. An integrated method of selecting environmental covariates for predictive soil depth mapping[J]. >Journal of Integrative Agriculture, 2019, 18(2): 301-315.
[15] ZHANG Hao, HOU Dan-ping, PENG Xian-long, MA Bing-ju, SHAO Shi-mei, JING Wen-jiang, GU Jun-fei, LIU Li-jun, WANG Zhi-qin, LIU Yuan-ying, YANG Jian-chang. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2716-2731.
No Suggested Reading articles found!