Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (2): 389-393    DOI: 10.1016/S2095-3119(19)62826-1
Section 4 Integrative management strategies for potato insect pests Advanced Online Publication | Current Issue | Archive | Adv Search |
Potential of Steinernema carpocapsae (Weiser) as a biological control agent against potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae)
YAN Jun-jie1, 2, Shovon Chandra SARKAR1, MENG Rui-xia2, Stuart REITZ3, GAO Yu-lin1 
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, P.R.China
3 Department of Crop and Soil Sciences, Malheur County Extension, Oregon State University, Ontario, OR 97914, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The entomopathogenic nematode, Steinernema carpocapsae, was evaluated for control of the potato tuber moth, Phthorimaea operculella, under laboratory conditions.  We evaluated different concentrations of S. carpocapsae for control of 2nd, 3rd, and 4th instar P. operculella.  The median lethal concentration (LC50) of S. carpocapsae infective juveniles (IJs) to 2nd, 3rd and 4th instar larvae of P. operculella was 200, 363, 181 IJs mL–1, respectively.  With the extension of treatment time, the cumulative mortality increased for 2nd, 3rd, and 4th instar larvae and pupae of P. operculella.  Fourth instars were the most susceptible for all observation periods.  Therefore, our results suggest that S. carpocapsae could be an effective biological control agent for P. operculella.
 
Keywords:  Steinernema carpocapsae        Phthorimaea operculella        patato        integrated biological pest control  
Received: 25 April 2019   Accepted:
Fund: This work was supported in part by the National Key Research and Development Program of China (2018YFD0200802).
Corresponding Authors:  Correspondence GAO Yu-lin, Tel: +86-10-62815930, E-mail: gaoyulin@ caas.cn   
About author:  YAN Jun-jie, Tel: +86-10-62815930, E-mail: yanjunjie125@qq.com;

Cite this article: 

YAN Jun-jie, Shovon Chandra SARKAR, MENG Rui-xia, Stuart REITZ, GAO Yu-lin. 2020.

Potential of Steinernema carpocapsae (Weiser) as a biological control agent against potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae)
. Journal of Integrative Agriculture, 19(2): 389-393.

Abbott W S. 1925. A method for computing the effectiveness of insecticides. Journal of Economic Entomology, 18, 265–267.
Do?ramaci M, Tingey W M. 2010. Performance of a North American field population and a laboratory colony of the potato tuberworm, Phthorimaea operculella, on foliage of resistant and susceptible potato clones. Journal of Insect Science, 10, 80.
Du L T, Li Z Y, Zhou L M. 2006. Comparative test on the control effects of three kinds of pesticides on potato tuberworm Phthorimaea opercuella (Zeller). Chinese Potato Journal, 20, 92–93. (in Chinese)
Gao Y. 2018a. Potato tuberworm: A threat for China potatoes. Entomology, Ornithology & Herpetology (Current Research), 7, 2.
Gao Y. 2018b. Potato tuberworm: Impact and methods for control - Mini Review. CAB Reviews, 13, 1–3.
Hafez E. 2011. Insecticide resistance in potato tuber moth Phthorimaea operculella Zeller in Egypt. Journal of American Science, 7, 263–266.
Hassanikakhki M, Karimi J, Hosseini M. 2013. Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) under laboratory conditions. Biocontrol Science and Technology, 23, 146–159.
Ivanova T S, Borovaya V P, Danilov L G. 1994. A biological method of controlling the potato moth. Zashchita Rastenii Moskva, 2, 39. (in Russian)
Jin X P, Li Z Y, Chen B, Sun Y X. 2005. Experimental population life tables of potato tuber moth at different temperatures. Southwest China Journal of Agricultural Sciences, 18, 773–776. (in Chinese)
Kamali S, Karimi J, Hosseini M, Campos-Herrera R, Duncan L W. 2013. Biocontrol potential of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae on cucurbit fly, Dacus ciliatus (Diptera: Tephritidae). Biocontrol Science and Technology, 23, 1307–1323.
Kary N E, Sanatipour Z, Mohammadi D, Koppenhöfer A M. 2018. Developmental stage affects the interaction of Steinernema carpocapsae and abamectin for the control of Phthorimaea operculella (Lepidoptera, Gelechidae). Biological Control, 122, 18–23.
Kepenekci I, Tülek A, Alkan M, Haz?r S. 2013. Biological control potential of native entomopathogenic nematodes against the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) in Turkey. Pakistan Journal of Zoology, 45, 1415–1422.
Koppenhöfer A M, Kaya H K, Taormino S P. 1995. Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. Journal of Invertebrate Pathology, 65, 193–199.
Kroschel J. 1995. Integrated pest management of potato tuber moth in the Republic of Yemen with special reference to the integrated biological control of the potato tuber moth (Phthorimaea operculella Zeller). Ph D thesis, Margraf Verlag, Weikersheim, Germany. 
Kroschel J, Sporleder M, Tonnang H E Z, Juarez H, Carhuapoma P, Gonzales J C, Simon R. 2013. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural & Forest Meteorology, 170, 228–241.
Rondon S I. 2010. The potato tuberworm: A literature review of its biology, ecology, and control. American Journal of Potato Research, 87, 149–166.
Rondon S I, Hane D C, Brown C R, Vales M I, Dogramaci M. 2009. Resistance of potato germplasm to the potato tuberworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 102, 1649–1653.
Shapiro D I, McCoy C W. 2000, Virulence of entomopathogenic nematodes to Diaprepes abbreviatus (Coleoptera: Curculionidae) in the laboratory. Journal of Economic Entomology, 93, 1090–1095.
Szendrei Z. 1986. Integrated pest management for potatoes in the western United States. Journal of Economic Entomology, 66, 1784–1796.
Vashisth S, Chandel Y S, Chandel R S. 2018. Biological control potential of North West Himalayan strains of Heterorhabditid nematodes against the turnip moth, Agrotis segetum (Denis & Schiffermuller) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 28, 37.
White G F. 1927. A Method for obtaining infective nematode larvae from cultures. Science, 66,  302–303.
Wilson M J, Ehlers R U, Glazer I. 2012. Entomopathogenic nematode foraging strategies - Is Steinernema carpocapsae really an ambush forager? Nematology, 14, 389–394.
Xu J, Zhu J H, Yang Y L, Tang H, Lü H P, Fan M S, Shi Y, Dong D F, Wang G J, Wang W X, Xiong X Y, Gao Y L. 2019. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica, 52, 2800–2808. (in Chinese)
Yadav A K. 2012. Soil moisture effects on the activity of three entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) isolated from Meghalaya, India. Journal of Parasitic Diseases, 36, 94–98.
Yoshida M. 2010. Influence of temperature on pathogenicity of some entomopathogenic nematode isolates (Steinernema spp.) from Japan screened for ability to control some noctuid moth larvae. Japanese Journal of Nematology, 40, 27–40.
No related articles found!
No Suggested Reading articles found!