Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1152-1166    DOI: 10.1016/j.jia.2023.09.020
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens
Jianmin Zhou*, Yu Fu*, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu
Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs/Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture & Rural Affairs/Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 Highlights 
Dietary serine supplementation improved albumen quality in laying hens fed a low-gossypol cottonseed meal (LCSM)-based diet.
Enhanced ovomucin content and structure contributed to better albumen quality through α-helix formation, β-ovomucin expression, and O-glycosylation.
Serine improved magnum morphology and barrier function, supporting ovomucin synthesis and egg white quality.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本试验旨在研究低酚棉粕蛋鸡饲粮补充丝氨酸对蛋清品质蛋清卵黏蛋白成分的影响,并探究其潜在的调控机制。选取28835周龄健康海兰褐产蛋鸡,随机分为3个组,每组8个重复,每重复12只鸡。各处理组蛋鸡分别饲喂豆粕型饲粮、低酚棉粕型饲粮和补充0.435%丝氨酸的低酚棉粕型饲粮。(结果)试验结果表明:饲粮补充丝氨酸阻止了低酚棉粕引起的蛋清品质(即浓蛋清比例(P<0.05)、浓蛋清/稀蛋清(P<0.05)、蛋白高度(P<0.05)、哈氏单位(P<0.05)和蛋清表观黏度)下降。同时,饲粮添加丝氨酸缓解了低酚棉粕造成的蛋清卵黏蛋白含量降低(P<0.05)。卵黏蛋白的傅里叶变换红外光谱分析显示,饲喂豆粕型和低酚棉粕型饲粮蛋鸡的蛋清卵黏蛋白在1200~800 cm-1波长范围内(糖苷类化合物特征频率区)的二阶导数图谱存在明显差异,且低酚棉粕降低了卵黏蛋白的α-螺旋比例(P<0.05),而补充丝氨酸后α-螺旋比例显著回升(P<0.05)。此外,饲粮添加丝氨酸显著上调了产蛋后2 h7.5 h蛋鸡输卵管膨大部黏膜的β-卵黏蛋白基因表达(P<0.05),缓解了低酚棉粕诱导的膨大部上皮损伤,增加了杯状细胞计数(P<0.05),并显著上调了膨大部黏膜闭合蛋白、粘蛋白2O-糖基化相关糖基转移酶的基因表达(P<0.05)。综合而言,饲粮添加丝氨酸可缓解低酚棉粕所致的蛋清品质下降,可能与其调节卵黏蛋白的合成有关。这种调节作用同时发生在β-卵黏蛋白的转录和转录后的O-糖基化修饰阶段,而丝氨酸对膨大部形态和屏障功能的改善也可能对卵黏蛋白的产生起到部分作用。本试验从蛋清蛋白合成调控的角度,为营养干预改善蛋鸡蛋清品质提供了新的思路。



Abstract  
This study examined the effect of dietary serine (Ser) on egg white quality, ovomucin content of laying hens fed low-gossypol cottonseed meal (LCSM)-based diet and sought to explore the regulatory mechanism underlying the effects.  A total of 288 Hy-Line Brown layers were randomly assigned into 3 treatments and respectively offered soybean meal (SBM)-based diet, LCSM-based diet, and LCSM-based diet supplemented with 0.435% L-Ser.  Dietary Ser supplementation reversed the decrease in quality indices of albumen, including the proportion of thick albumen (P<0.05), thick-to-thin ratio (P<0.05), albumen height (P<0.05), Haugh unit (P<0.05), and apparent viscosity that were caused by LCSM intake.  Also, dietary Ser supplementation mitigated the LCSM-induced reduction in ovomucin content of the albumen (P<0.05).  FT-IR analysis of ovomucin revealed differences in second derivative spectra at 1,200–800 cm–1 between birds received SBM- and LCSM-based diets, meanwhile, the α-helix of ovomucin was decreased by LCSM but increased by Ser addition (P<0.05).  Furthermore, Ser addition up-regulated the mRNA expression of β-ovomucin in magnum mucosa at 2 and 7.5 h post-oviposition (P<0.05).  Ser mitigated the LCSM-induced impairment of magnum epithelium, increased goblet cell counts (P<0.05), and up-regulated the expression of occludin, mucin 2, and the relevant glycosyltransferases for O-glycosylation in magnum mucosa (P<0.05).  Conclusively, the alleviating effect of Ser on declining albumen quality due to dietary LCSM, could be explained by the efficacy of Ser in regulating ovomucin synthesis.  This regulation occurred at the levels of transcription and post-transcriptional O-glycosylation modification of β-ovomucin, while positive effect on magnum morphology and barrier function could also in part account for the ovomucin content.  This would provide a promising research direction on the adoption of nutritional interventions for manipulation of egg white quality from perspectives of albumen protein synthesis.


Keywords:  egg white quality        low-gossypol cotton        seed meal        laying hen        ovomucin        serine  
Received: 24 March 2023   Accepted: 07 July 2023
Fund: 
This study was financially supported by the National Natural Science Foundation of China (32072774), the China Postdoctoral Science Foundation (2023M733822), the Beijing Innovation Consortium of Agriculture Research System (BAIC04), China, the earmarked fund for CARS-National System for Layer Production Technology, China (CARS-40), and the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences.
About author:  Jianmin Zhou, E-mail: zhoujianmin@caas.cn, Yu Fu, E-mail: fuuuuyu@163.com, #Correspondence Shugeng Wu, Tel: 86-10-82106097, E-mail: wushugeng@caas.cn * These authors contributed equally to this study.

Cite this article: 

Jianmin Zhou, Yu Fu, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu. 2025. Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens. Journal of Integrative Agriculture, 24(3): 1152-1166.

Arike L, Holmén-Larsson J, Hansson G C. 2017. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology27, 318–328.

AOAC (Association of Official Analytical Chemists). 2006. Official Methods of Analysis of Association of Official Analytical Chemists International. 18th ed. Association of Official Analytical Chemists International, Arlington, VA, USA.

AOAC (Association of Official Analytical Chemists). 2016. Official Methods of Analysis of Association of Official Analytical Chemists International. 20th ed. Association of Official Analytical Chemists International, Gaithersburg, MD, USA.

Asaro N J, Berendt K D, Zijlstra R T, Brewer J, Shoveller A K. 2018. Carbohydrate level and source have minimal effects on feline energy and macronutrient metabolism. Journal of Animal Science96, 5052–5063.

Chen Z, Li J, Tu Y, Zhao Y, Luo X, Wang J, Wang M. 2015. Changes in gel characteristics of egg white under strong alkali treatment. Food Hydrocolloids45, 1–8.

Donovan J W, Davis J G, White L M. 1970. Chemical and physical characterization of ovomucin, a sulfated glycoprotein complex from chicken eggs. Biochimica et Biophysica Acta207, 190–201.

Geng F, Wang J, Liu D, Jin Y, Ma M. 2017. Identification of N-glycosites in chicken egg white proteins using an omics strategy. Journal of Agricultural and Food Chemistry65, 5357–5364.

He T, Zhang H, Wang J, Wu S, Yue H, Qi G. 2017. Proteomic comparison by iTRAQ combined with mass spectrometry of egg white proteins in laying hens (Gallus gallus) fed with soybean meal and cottonseed meal. PLoS ONE12, e0182886.

He T, Zhang H J, Wang J, Wu S G, Yue H Y, Qi G H. 2015. Application of low-gossypol cottonseed meal in laying hens’ diet. Poultry Science94, 2456–2463.

He W, Xiao N, Zhao Y, Yao Y, Xu M, Du H, Wu N, Tu Y. 2021. Effect of polysaccharides on the functional properties of egg white protein: A review. Journal of Food Science86, 656–666.

Kemmerer A R, Heywang B W, Vavich M G, Phelps R A. 1963. Further studies of the effect of cottonseed oil on discoloration of cold storage eggs. Poultry Science42, 893–895.

Kemps B J, Bamelis F R, De Ketelaere B, Mertens K, Tona K, Decuypere E M, De Baerdemaeker J G. 2006. Visible transmission spectroscopy for the assessment of egg freshness. Journal of the Science of Food and Agriculture86, 1399–1406.

Kemps B J, Bamelis F R, Mertens K, Decuypere E M, De Baerdemaeker J G, De Ketelaere B. 2010. The assessment of viscosity measurements on the albumen of consumption eggs as an indicator for freshness. Poultry Science89, 2699–2703.

Kidani S, Kaneoka H, Okuzaki Y, Asai S, Kojima Y, Nishijima K I, Iijima S. 2016. Analyses of chicken sialyltransferases related to O-glycosylation. Journal of Bioscience and Bioengineering122, 379–384.

Kojima Y, Mizutani A, Okuzaki Y, Nishijima K I, Kaneoka H, Sasamoto T, Miyake K, Iijima S. 2015. Analyses of chicken sialyltransferases related to N-glycosylation. Journal of Bioscience and Bioengineering119, 623–628.

Kumbár V, Nedomová Š, Strnková J, Buchar J. 2015. Effect of egg storage duration on the rheology of liquid egg products. Journal of Food Engineering156, 45–54.

Liu M, Yu W, Ren F, Wu J. 2018. Formation and characterization of peptides in egg white during storage at ambient temperature. Food Chemistry263, 135–141.

Liu X, Wang J, Huang Q, Cheng L, Gan R, Liu L, Wu D, Li H, Peng L, Geng F. 2020. Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: Gel properties, structure and quantitative proteome analysis. Food Hydrocolloids106, 105873.

Liu X, Wang J, Liu L, Cheng L, Huang Q, Wu D, Peng L, Shi X, Li S, Geng F. 2021. Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties. Food Chemistry342, 128252.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Cmethod. Methods25, 402–408.

Martens S D, Tiemann T T, Bindelle J, Peters M, Lascano C E. 2012. Alternative plant protein sources for pigs and chickens in the tropics-nutritional value and constraints: A review. Journal of Agriculture and Rural Development in the Tropics and Subtropics113, 101–123.

Mu Y, Zhu L Y, Yang A, Gao X, Zhang N, Sun L, Qi D. 2019. The effects of dietary cottonseed meal and oil supplementation on laying performance and egg quality of laying hens. Food Science & Nutrition7, 2436–2447.

NRC (National Research Council). 1994. Nutrient Requirement

of Poultry. 9th ed. National Academies Press, Washington, D.C.

Offengenden M, Wu J. 2013. Egg white ovomucin gels: Structured fluids with weak polyelectrolyte properties. RSC Advances3, 910–917.

Omana D A, Wu J. 2009. A new method of separating ovomucin from egg white. Journal of Agricultural and Food Chemistry57, 3596–3603.

Rabouille C, Aon M A, Muller G, Cartaud J, Thomas D. 1990. The supramolecular organization of ovomucin. Biophysical and morphological studies. Biochemical Journal266, 697–706.

Riley W W, Jr Austic R E. 1989. Influence of dietary electrolytes on lysine and arginine absorption in chick intestine. Poultry Science68, 1255–1262.

Roberts S A, Xin H, Kerr B J, Russell J R, Bregendahl K. 2007. Effects of dietary fiber and reduced crude protein on nitrogen balance and egg production in laying hens. Poultry Science86, 1716–1725.

Shan Y, Tang D, Wang R, Tu A, Yi Y, Wang X, Liu B, Zhou Y, Huang Q, Lü X. 2020. Rheological and structural properties of ovomucin from chicken eggs with different interior quality. Food Hydrocolloids100, 105393.

Silversides F G. 1994. The Haugh unit correction for egg weight is not adequate for comparing eggs from chickens of different lines and ages. Journal of Applied Poultry Research3, 120–126.

Steffe J F, Daubert C R. 2006. Bioprocessing PipelinesRheology and Analysis. Freeman Press Publishing, Michigan, USA.

Strecker G, Wieruszeski J M, Martel C, Montreuil J. 1987. Determination of the structure of sulfated tetra- and pentasaccharides obtained by alkaline borohydride degradation of hen ovomucin. A fast atom bombardment-mass spectrometric and 1H-NMR spectroscopic study. Glycoconjugate Journal4, 329–337.

Strecker G, Wieruszeski J M, Martel C, Montreuil J. 1989. Complete 1H- and 13C-N.M.R. Assignments for two sulphated oligosaccharide alditols of hen ovomucin. Carbohydrate Research185, 1–13.

SAS. 1999. Statistical Analysis System User’ Guide Statistics.

SAS Institute, Cary, NC, USA.

Sun C, Liu J, Li W, Xu G, Yang N. 2017. Divergent proteome patterns of egg albumen from domestic chicken, duck, goose, turkey, quail and pigeon. Proteomics17, 17–18.

Świątkiewicz S, Arczewska-Włosek A, Józefiak D. 2019. The use of cottonseed meal as a protein source for poultry: An updated review. World’s Poultry Science Journal72, 473–484.

Toussant M J, Latshaw J D. 1999. Ovomucin content and composition in chicken eggs with different interior quality. Journal of the Science of Food and Agriculture79, 1666–1670.

Tsuge Y, Shimoyamada M, Watanabe K. 1997. Structural features of newcastle disease virus- and anti-ovomucin antibody-binding glycopeptides from pronase treated ovomucin. Journal of Agricultural and Food Chemistry45, 2393–2398.

Wan Y, Wang Z, Wang J, Su H, Guo X, Wu J, Li Q, Ni G, Jiang R. 2019. Genetic parameters of the thick-to-thin albumen ratio and egg compositional traits in layer-type chickens. British Poultry Science60, 517–521.

Wang J, Liu X, Li S, Ye H, Luo W, Huang Q, Geng F. 2022. Ovomucin may be the key protein involved in the early formation of egg-white thermal gel. Food Chemistry366, 130596.

Wang X, Wu S, Zhang H, Yue H, Qi G, Li J. 2015. Effect of dietary protein sources and storage temperatures on egg internal quality of stored shell eggs. Animal Nutrition1, 299–304.

Wang X, Zhang H, Wang H, Wang J, Wu S, Qi G. 2017. Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens. Asian-Australasian Journal of Animal Sciences30, 400–409.

Wang X C, Wang X H, Wang J, Wang H, Zhang H J, Wu S G, Qi G H. 2018. Dietary tea polyphenol supplementation improved egg production performance, albumen quality, and magnum morphology of Hy-Line Brown hens during the late laying period. Journal of Animal Science96, 225–235.

Wang X C, Zhang H J, Wang H, Yue H Y, Wang J, Wu S G, Qi G H. 2017. Effect of different protein ingredients on performance, egg quality, organ health, and jejunum morphology of laying hens. Poultry Science96, 1316–1324.

Wang Y, Wang Z, Shan Y. 2019. Assessment of the relationship between ovomucin and albumen quality of shell eggs during storage. Poultry Science98, 473–479.

Wyburn G M, Johnston H S, Draper M H, Davidson M F. 1970. The fine structure of the infundibulum and magnum of the oviduct of Gallus domesticus. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences55, 213–232.

Yuan C, Song H H, Zhang X Y, Jiang Y J, Zhang A T, Azzam M M, Zou X T. 2014. Effect of expanded cottonseed meal on laying performance, egg quality, concentrations of free gossypol in tissue, serum and egg of laying hens. Animal Science Journal85, 549–554.

Zhou J M, Qiu K, Wang J, Zhang H J, Qi G H, Wu S G. 2021. Effect of dietary serine supplementation on performance, egg quality, serum indices, and ileal mucosal immunity in laying hens fed a low crude protein diet. Poultry Science100, 101465.

[1] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[2] FENG Shi-qian, ZHANG Neng, CHEN Jun, ZHANG Dao-gang, ZHU Kai-hui, CAI Ni, TU Xiong-bing, ZHANG Ze-hua. Serine protease inhibitors LmSPN2 and LmSPN3 co-regulate embryonic diapause in Locusta migratoria manilensis (Meyen) via the Toll pathway[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3720-3730.
[3] TANG Yang-yang, CUI Ying-ying, JIANG Yan-yan, SHAO Ming-zhu, ZANG Xin-xin, DANG Guang-hui, LIU Si-guo. Characteristics of Mycobacterium tuberculosis serine protease Rv1043c in enzymology and pathogenicity in mice[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3755-3768.
No Suggested Reading articles found!