Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2407-2420    DOI: 10.1016/j.jia.2023.10.029
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China

Yuhan Yang1*, Dou Wang1*, Yaning Bai1, Wenyan Huang1, Shimin Gao1, Xingchen Wu1, Ying Wang1, Jianle Ren1, Jinxin He1, Lin Jin1, Mingming Hu2, Zhiwei Wang2, Zhongbing Wang2, Haili Ma1#, Junping Li1#, Libin Liang1#

1 College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
2 Shanxi Provincial Animal Disease Prevention and Control Center, Taiyuan 030000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

禽传染性支气管炎(IB)是由传染性支气管炎病毒(IBV)引起的一种急性、高度接触性传染病。IBV在世界范围内流行,给养禽业造成了严重的经济损失。目前,许多商业化的IBV疫苗株(包括H120M41LDT3-A等)已广泛用于预防和控制禽传染性支气管炎,但由于IBV易于变异及重组导致疫苗免疫效果不够理想,IB疫情时有发生。

本研究从中国中部地区免疫过H120疫苗的鸡群中分离到IBV新毒株,分别命名为SX/2106SX/2204并对两株IBV的全基因组进行了序列测定及重组分析。基于S1基因的遗传演化分析结果显示,SX/2106属于GI-19基因型,SX/2204则属于GVI-1基因型。重组分析表明,SX/2106可能来源于GI-19基因型毒株、GI-7基因型毒株与类LDT3-A疫苗的重组事件;SX/2204可能来源于GVI-13基因型毒株、GVI-1基因型毒株与类H120疫苗的重组事件。病毒交叉中和试验表明,SX/2106SX/2204的抗原性与H120疫苗株存在显著差异。动物实验表明,SX/2106SX/2204均能在鸡的肺脏和肾脏中有效复制并引起发病和死亡;通过观察感染鸡后气管上皮细胞的纤毛运动情况,发现SX/2106SX/2204感染均能显著抑制纤毛活性,对气管上皮细胞黏膜造成严重损伤。病毒交叉中和试验及免疫后攻毒保护试验结果表明,H120疫苗免疫并不能对这两株IBV感染提供有效保护。值得注意的是,与之前分离的GVI-1毒株相比,SX/2204的致病性有增强趋势,感染雏鸡死亡率高达60%,对于GVI-1基因型IBV毒株的监测与防控需引起高度重视。

IBV在自然界中通过重组和突变不断进化,产生新的变异株。目前鸡传染性支气管炎在我国鸡群中发病率居高不下,严重影响鸡产业的健康发展,持续加强IBV的流行病学监测及时发现新的变异毒株,对于预防和控制IBV流行具有重要意义。



Abstract  

Avian infectious bronchitis (IB) is a highly contagious infectious disease caused by infectious bronchitis virus (IBV), which is prevalent in many countries worldwide and causes serious harm to the poultry industry.  At present, many commercial IBV vaccines have been used for the prevention and control of IB; however, IB outbreaks occur frequently.  In this study, two new strains of IBV, SX/2106 and SX/2204, were isolated from two flocks which were immunized with IBV H120 vaccine in central China.  Phylogenetic and recombination analysis indicated that SX/2106, which was clustered into the GI-19 lineage, may be derived from recombination events of the GI-19 and GI-7 strains and the LDT3-A vaccine.  Genetic analysis showed that SX/2204 belongs to the GVI-1 lineage, which may have originated from the recombination of the GI-13 and GVI-1 strains and the H120 vaccine.  The virus cross-neutralization test showed that the antigenicity of SX/2106 and SX/2204 was different from H120.  Animal experiments found that both SX/2106 and SX/2204 could replicate effectively in the lungs and kidneys of chickens and cause disease and death, and H120 immunization could not provide effective protection against the two IBV isolates.  It is noteworthy that the pathogenicity of SX/2204 has significantly increased compared to the GVI-1 strains isolated previously, with a mortality rate up to 60%.  Considering the continuous mutation and recombination of the IBV genome to produce new variant strains, it is important to continuously monitor epidemic strains and develop new vaccines for the prevention and control of IBV epidemics.


Keywords:  infectious bronchitis virus        GI-19 lineage        GVI-1 lineage        complete genome        recombination        pathogenicity  
Received: 16 July 2023   Accepted: 27 September 2023
Fund: 
This work was supported by the National Natural Science Foundation of China (32202788), the Special Research Fund of Shanxi Agricultural University for High-level Talents, China (2021XG004), the Fund for Shanxi “1331 Project”, China (20211331-13), the Shanxi Province Excellent Doctoral Work Award-Scientific Research Project, China (SXBYKY2021063, SXBYKY2021005, and SXBYKY2022014), the earmarked fund for Modern Agro-industry Technology Research System of Shanxi Province, China (2023CYJSTX15-13) and the Fundamental Research Program of Shanxi Province, China (202103021224156).
About author:  Yuhan Yang, E-mail: yangyh997@163.com; Dou Wang, E-mail: wangdd0427@163.com; #Correspondence Libin Liang, Tel: +86-354-6285988, E-mail: lianglibin521@126.com; Junping Li, Tel: +86-354-6285988, E-mail: lijunping916@163.com; Haili Ma, Tel: +86-354-6288629, E-mail: mahaili1718@126.com * These authors contributed equally to this work.

Cite this article: 

Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. 2024. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China. Journal of Integrative Agriculture, 23(7): 2407-2420.

Bali K, Balint A, Farsang A, Marton S, Nagy B, Kaszab E, Belak S, Palya V, Banyai K. 2021. Recombination events shape the genomic evolution of infectious bronchitis virus in Europe. Viruses13, 535.

Bande F, Arshad S S, Omar A R, Hair-Bejo M, Mahmuda A, Nair V. 2017. Global distributions and strain diversity of avian infectious bronchitis virus: A review. Animal Health Research Reviews18, 70–83.

Bo Z, Chen S, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. 2022. Pathogenicity evaluation of GVI-1 lineage infectious bronchitis virus and its long-term effects on reproductive system development in SPF hens. Frontiers in Microbiology13, 1049287.

Boursnell M, Brown T, Foulds I, Green P, Tomley F, Binns M. 1987. The complete nucleotide sequence of avian infectious bronchitis virus: Analysis of the polymerase-coding region. Advances in Experimental Medicine and Biology218, 15–29.

Callison S A, Hilt D A, Boynton T O, Sample B F, Robison R, Swayne D E, Jackwood M W. 2006. Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens. Journal of Virological Methods138, 60–65.

Cavanagh D. 2007. Coronavirus avian infectious bronchitis virus. Veterinary Research38, 281–297.

Chen Y, Jiang L, Zhao W, Liu L, Zhao Y, Shao Y, Li H, Han Z, Liu S. 2017. Identification and molecular characterization of a novel serotype infectious bronchitis virus (GI-28) in China. Veterinary Microbiology198, 108–115.

Cook J K, Jackwood M, Jones R C. 2012. The long view: 40 years of infectious bronchitis research. Avian Pathology41, 239–250.

Cortes V, Sevilla-Navarro S, Garcia C, Marin C, Catala-Gregori P. 2022. Seroprevalence and prevalence of infectious bronchitis virus in broilers, laying hens and broiler breeders in Spain. Poultry Science101, 101760.

Dwars R M, Matthijs M G, Daemen A J, van Eck J H, Vervelde L, Landman W J. 2009. Progression of lesions in the respiratory tract of broilers after single infection with Escherichia coli compared to superinfection with E. coli after infection with infectious bronchitis virus. Veterinary Immunology and Immunopathology127, 65–76.

Fan W, Tang N, Dong Z, Chen J, Zhang W, Zhao C, He Y, Li M, Wu C, Wei T, Huang T, Mo M, Wei P. 2019. Genetic analysis of avian coronavirus infectious bronchitis virus in yellow chickens in southern china over the past decade: revealing the changes of genetic diversity, dominant genotypes, and selection pressure. Viruses11, 898.

Gao M, Wang Q, Zhao W, Chen Y, Zhang T, Han Z, Xu Q, Kong X, Liu S. 2016. Serotype, antigenicity, and pathogenicity of a naturally recombinant TW I genotype infectious bronchitis coronavirus in China. Veterinary Microbiology191, 1–8.

Han Z, Gao M, Chen Y, Zhao W, Sun J, Zhao Y, Liu S. 2018. Genetics, antigenicity and virulence properties of three infectious bronchitis viruses isolated from a single tracheal sample in a chicken with respiratory problems. Virus Research257, 82–93.

Hou Y, Zhang L, Ren M, Han Z, Sun J, Zhao Y, Liu S. 2020. A highly pathogenic GI-19 lineage infectious bronchitis virus originated from multiple recombination events with broad tissue tropism. Virus Research285, 198002.

Jiang L, Zhao W, Han Z, Chen Y, Zhao Y, Sun J, Li H, Shao Y, Liu L, Liu S. 2017. Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from south China. InfectionGenetics and Evolution54, 437–446.

Junnu S, Pohuang T. 2022. Molecular investigation of S2-3a/3b-E-M-4b/4c-5a/5b-N gene of QX-like and variant genotype infectious bronchitis virus isolated in Thailand reveals a distinct E gene. InfectionGenetics and Evolution97, 105157.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution30, 772–780.

Keep S, Stevenson-Leggett P, Dowgier G, Everest H, Freimanis G, Oade M, Hammond J A, Armesto M, Vila R, Bru T, Geerligs H, Britton P, Bickerton E. 2022. Identification of amino acids within nonstructural proteins 10 and 14 of the avian coronavirus infectious bronchitis virus that result in attenuation in vivo and in ovoJournal of Virology96, e0205921.

Kong L, You R, Zhang D, Yuan Q, Xiang B, Liang J, Lin Q, Ding C, Liao M, Chen L, Ren T. 2021. Infectious bronchitis virus infection increases pathogenicity of H9N2 avian influenza virus by inducing severe inflammatory response. Frontiers in Veterinary Science8, 824179.

Li L, Xue C, Chen F, Qin J, Xie Q, Bi Y, Cao Y. 2010. Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004–2008. Veterinary Microbiology143, 145–154.

Lole K S, Bollinger R C, Paranjape R S, Gadkari D, Kulkarni S S, Novak N G, Ingersoll R, Sheppard H W, Ray S C. 1999. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. Journal of Virology73, 152–160.

Ma T, Xu L, Ren M, Shen J, Han Z, Sun J, Zhao Y, Liu S. 2019. Novel genotype of infectious bronchitis virus isolated in China. Veterinary Microbiology230, 178–186.

Mase M, Hiramatsu K, Watanabe S, Iseki H. 2022. Genetic analysis of the complete S1 gene in Japanese infectious bronchitis virus strains. Viruses14, 716.

Munyahongse S, Pohuang T, Nonthabenjawan N, Sasipreeyajan J, Thontiravong A. 2020. Genetic characterization of infectious bronchitis viruses in Thailand, 2014–2016: Identification of a novel recombinant variant. Poultry Science99, 1888–1895.

Peng S, Wang Y, Zhang Y, Song X, Zou Y, Li L, Zhao X, Yin Z. 2022. Current knowledge on infectious bronchitis virus non-structural proteins: The bearer for achieving immune evasion function. Frontiers in Veterinary Science9, 820625.

Qin Y, Tu K, Teng Q, Feng D, Zhao Y, Zhang G. 2021. Identification of novel T-cell epitopes on infectious bronchitis virus n protein and development of a multi-epitope vaccine. Journal of Virology95, e0066721.

Ramirez-Nieto G, Mir D, Almansa-Villa D, Cordoba-Argotti G, Beltran-Leon M, Rodriguez-Osorio N, Garai J, Zabaleta J, Gomez A P. 2022. New insights into avian infectious bronchitis virus in Colombia from whole-genome analysis. Viruses14, 2562.

Reed L J, Muench H. 1938. A simple method of estimating fifty percent endpoints.The American Journal of Hygiene27, 493–497.

Ren G, Liu F, Huang M, Li L, Shang H, Liang M, Luo Q, Chen R. 2020. Pathogenicity of a QX-like avian infectious bronchitis virus isolated in China. Poultry Science99, 111–118.

Ren M, Sheng J, Ma T, Xu L, Han Z, Li H, Zhao Y, Sun J, Liu S. 2019. Molecular and biological characteristics of the infectious bronchitis virus TC07-2/GVI-1 lineage isolated in China. InfectionGenetics and Evolution75, 103942.

Sun L, Tang X, Qi J, Zhang C, Zhao J, Zhang G, Zhao Y. 2021. Two newly isolated GVI lineage infectious bronchitis viruses in China show unique molecular and pathogenicity characteristics. InfectionGenetics and Evolution94, 105006.

Valastro V, Holmes E C, Britton P, Fusaro A, Jackwood M W, Cattoli G, Monne I. 2016. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. InfectionGenetics and Evolution39, 349–364.

Vandekerchove D, Herdt P D, Laevens H, Butaye P, Meulemans G, Pasmans F. 2004. Significance of interactions between Escherichia coli and respiratory pathogens in layer hen flocks suffering from colibacillosis-associated mortality. Avian Pathology33, 298–302.

Wang C Y, Luo Z B, Shao G Q, Hou B. 2022. Genetic and pathogenic characteristics of a novel infectious bronchitis virus strain in genogroup VI (CK/CH/FJ/202005). Veterinary Microbiology266, 109352.

Xu L, Han Z, Jiang L, Sun J, Zhao Y, Liu S. 2018. Genetic diversity of avian infectious bronchitis virus in China in recent years. InfectionGenetics and Evolution66, 82–94.

Yan S H, Chen Y, Zhao J, Xu G, Zhao Y, Zhang G Z. 2016. Pathogenicity of a TW-like strain of infectious bronchitis virus and evaluation of the protection induced against it by a QX-like strain. Frontiers in Microbiology7, 1653.

Yan W, Qiu R, Wang F, Fu X, Li H, Cui P, Zhai Y, Li C, Zhang L, Gu K, Zuo L, Lei C, Wang H, Yang X. 2021. Genetic and pathogenic characterization of a novel recombinant avian infectious bronchitis virus derived from GI-1, GI-13, GI-28, and GI-19 strains in Southwestern China. Poultry Science100, 101210.

Yu L, Jiang Y, Low S, Wang Z, Nam S J, Liu W, Kwangac J. 2001. Characterization of three infectious bronchitis virus isolates from China associated with proventriculus in vaccinated chickens. Avian Diseases45, 416–424.

Zhang X, Deng T, Lu J, Zhao P, Chen L, Qian M, Guo Y, Qiao H, Xu Y, Wang Y, Li X, Zhang G, Wang Z, Bian C. 2020. Molecular characterization of variant infectious bronchitis virus in China, 2019: Implications for control programmes. Transboundary and Emerging Diseases67, 1349–1355.

[1] TANG Yang-yang, CUI Ying-ying, JIANG Yan-yan, SHAO Ming-zhu, ZANG Xin-xin, DANG Guang-hui, LIU Si-guo. Characteristics of Mycobacterium tuberculosis serine protease Rv1043c in enzymology and pathogenicity in mice[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3755-3768.
[2] ZHANG Xing-zhi, CHEN Shuang, Yakubu Saddeeq ABUBAKAR, MAO Xu-zhao, MIAO Peng-fei, WANG Zong-hua, ZHOU Jie, ZHENG Hua-wei. FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3444-3457.
[3] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[4] ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2944-2956.
[5] GONG Xiao-dong, LIU Yu-wei, BI Huan-huan, YANG Xiao-rong, HAN Jian-min, DONG Jin-gao, GU Shou-qin. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum[J]. >Journal of Integrative Agriculture, 2021, 20(1): 147-158.
[6] PAN Li-jun, LU Lin, LIU Yu-ping, WEN Sheng-xian, ZHANG Zeng-yan. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
[7] Lü Wu-yun, YANG Nan, XU Zhe, DAI Han, TANG Shuai, WANG Zheng-yi. FgHAT2 is involved in regulating vegetative growth, conidiation, DNA damage repair, DON production and virulence in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1813-1824.
[8] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[9] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Jia-nan, XU Zhi-gang, LI Xiang, HU Bai-shi. Bleeding canker of pears caused by Dickeya fangzhongdai: Symptoms, etiology and biology[J]. >Journal of Integrative Agriculture, 2020, 19(4): 889-897.
[10] SONG Su-qin, Lü Zhuo, WANG Jing, ZHU Jing, GU Mei-ying, TANG Qi-yong, ZHANG Zhi-dong, WANG Wei, ZHANG Li-juan, WANG Bo. First report of a new potato disease caused by Galactomyces candidum F12 in China[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2470-2476.
[11] WU Kai-li, CHEN Wei-zhong, YANG Shuai, WEN Ya, ZHENG Yu-ru, Wilfred Mabeche Anjago, YUN Ying-zi, WANG Zong-hua.
Isolation and identification of Fusarium oxysporum f. sp. cubense in Fujian Province, China
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1905-1913.
[12] CHANG Ji-tao, YU De-bin, LIANG Jian-bin, CHEN Jia, WANG Jian-fa, WANG Fang, JIANG Zhi-gang, HE Xi-jun, WU Rui, YU Li. Mycoplasma leachii causes bovine mastitis: Evidence from clinical symptoms, histopathology and immunohistochemistry[J]. >Journal of Integrative Agriculture, 2019, 18(1): 160-168.
[13] JIA Xiao-hui, FU Jun-fan, WANG Wen-hui, CUI Jian-chao, DU Yan-min, ZHOU Ru-jun, SUN Pingping. First report of Athelia bombacina causing postharvest fruit rot on pear[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2596-2599.
[14] WANG Li-min, ZHANG Yi-fan, DU Zhen-lin, Kang Rui-jiao, CHEN Lin-lin, XING Xiao-ping, YUAN Hong-xia, Ding Sheng-li, LI Hong-lian. FpPDE1 function of Fsarium pseudograminearum on pathogenesis in wheat[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2504-2512.
[15] WEN Chu, ZHONG Qi, ZHANG Jia-dong, LU Jian-shan, ZHANG Li-xin, YUAN Xi-min, GAN Menghou, CAI Xue-peng, ZHANG Guo-zhong. Sequence and phylogenetic analysis of chicken reoviruses in China[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1846-1855.
No Suggested Reading articles found!