Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2391-2406    DOI: 10.1016/j.jia.2024.04.019
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Substitutions of stem-loop subdomains in internal ribosome entry site of Senecavirus A: Impacts on rescue of sequence-modifying viruses
Qianqian Wang1, 2*, Jie Wang1*, Lei Zhang3, Xiaoxiao Duan4, Lijie Zhu1, Youming Zhang5, Yan Li4#, Fuxiao Liu1#
1 College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
2 College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, China
3 Shandong New Hope Liuhe Group Co., Ltd., Qingdao 266100, China
4 Qingdao Center for Animal Disease Control & Prevention, Qingdao 266199, China
5 State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
A型塞尼卡病毒(Senecavirus A, SVA)基因组为单股正链RNA,其5' 非编码区包含一个内部核糖体进入位点(Internal ribosome entry site, IRES),由十个较大或较小的茎环结构(包括一个假结)组成,这些结构已被证明具有很好的保守性。然而,目前尚不清楚每个茎环亚域,如单个茎或环,是否也高度保守。为阐明此问题,我们通过在IRES上进行定点突变(SDM)构建了一组29个SVA cDNA克隆。SDM修饰包括:(1)茎形成的互补序列相互交换;(2)环颠换;(3)环转换;以及(4)点突变。将所有cDNA克隆分别转染细胞以拯救活病毒,但只有四个SVA拯救成功,并在二十代传代过程中具有遗传稳定性,其中一个子代的生长速度明显较慢。双荧光素酶报告试验显示,SDM修饰的IRESes均未显著抑制IRES活性。我们先前研究发现,如果完全突变十个茎结构中任一个的单一基序,均会导致病毒拯救失败。有趣的是,本研究发现SVA可独立允许三个茎结构,其各自的互补序列相互交换,同时还可以容忍一个顶端环完全转换。因此,本研究表明,并非每个茎环结构的构象都严格保守。我们之前的研究还发现,两个SVA株可通过选择复制机制在IRES区域发生重组。尽管SVA IRES的序列高度保守,但这两项研究都表明其中某些元件仍然是可变的,这为IRES与多种因子间相互作用提供了新的研究方向。


Abstract  

Senecavirus A (SVA) has a positive-sense, single-stranded RNA genome. Its 5´ untranslated region harbors an internal ribosome entry site (IRES), comprising 10 larger or smaller stem-loop structures (including a pseudoknot) that have been demonstrated to be well conserved. However, it is still unclear whether each stem-loop subdomain, such as a single stem or loop, is also highly conserved. To clarify this issue in the present study, a set of 29 SVA cDNA clones were constructed by site-directed mutagenesis (SDM) on the IRES. The SDM-modified scenarios included: (1) stem-formed complementary sequences exchanging with each other; (2) loop transversion; (3) loop transition; and (4) point mutations. All cDNA clones were separately transfected into cells for rescuing viable viruses, whereas only four SVAs of interest could be recovered, and were genetically stable during 20 passages. One progeny grew significantly slower than the other three did. The dual-luciferase reporter assay showed that none of the SDM-modified IRESes significantly inhibited the IRES activity. Our previous study indicated that a single motif from any of the ten stem structures, if completely mutated, would cause the failure of virus recovery. Interestingly, our present study revealed three stem structures, whose individual complementary sequences could exchange with each other to rescue sequence-modifying SVAs. Moreover, one apical loop was demonstrated to have the ability to tolerate its own full-length transition, also having no impact on the recovery of sequence-modifying SVA. The present study suggested that not every stem-loop structure was strictly conserved in its conformation, while the full-length IRES itself was well conserved. This provides a new research direction on interaction between the IRES and many factors.


Keywords:  SVA        HCV IRES        HCV-like IRES        Stem–loop structure        cDNA clone        virus rescue        mutation  
Received: 18 October 2023   Accepted: 09 March 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32273000), the Qingdao Demonstration Project for People-benefit from Science and Techniques, China (23-2-8-xdny-14- nsh and 24-2-8-xdny-4-nsh), the National Program of Undergraduate Innovation and Entrepreneurship, China (202310435039), and the Open Project Fund of State Key Laboratory of Microbial Technology, China (M2023-03).
About author:  Qianqian Wang, E-mail: wqq107323@163.com; # Correspondence Yan Li, E-mail: liyanqd2008@163.com; Fuxiao Liu, E-mail: laudawn@126.com * These authors contributed equally to this study

Cite this article: 

Qianqian Wang, Jie Wang, Lei Zhang, Xiaoxiao Duan, Lijie Zhu, Youming Zhang, Yan Li, Fuxiao Liu. 2024. Substitutions of stem-loop subdomains in internal ribosome entry site of Senecavirus A: Impacts on rescue of sequence-modifying viruses. Journal of Integrative Agriculture, 23(7): 2391-2406.

Angulo J, Ulryck N, Deforges J, Chamond N, Lopez-Lastra M, Masquida B, Sargueil B. 2016. LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex. Nucleic Acids Research44, 1309–1325.

Arzt J, Bertram M R, Vu L T, Pauszek S J, Hartwig E J, Smoliga G R, Palinski R, Stenfeldt C, Fish I H, Hoang B H, Phuong N T, Hung V V, Vu P P, Dung N K, Dong P V, Tien N N, Dung D H. 2019. First detection and genome sequence of Senecavirus A in Vietnam. Microbiol Resour Announc8, e01247-18

Asnani M, Kumar P, Hellen C U. 2015. Widespread distribution and structural diversity of Type IV IRESs in members of Picornaviridae. Virology478, 61–74.

Bai J, Fan H, Zhou E, Li L, Li S, Yan J, Jiang P. 2020. Pathogenesis of a Senecavirus A isolate from swine in Shandong Province, China. Veterinary Microbiology242, 108606.

Bakhshesh M, Groppelli E, Willcocks M M, Royall E, Belsham G J, Roberts L O. 2008. The picornavirus avian encephalomyelitis virus possesses a hepatitis C virus-like internal ribosome entry site element. Journal of Virology82, 1993–2003.

Bennett B, Urzúa-Encina C, Pardo-Roa C, Ariyama N, Lecocq C, Rivera C, Badía C, Suárez P, Agredo M, Aguayo C, Ávila C, Araya H, Pérez P, Berrios F, Agüero B, Mendieta V, Pituco E M, de Almeida I G, Medina R, Brito B, et al. 2022. First report and genetic characterization of Seneca Valley virus (SVV) in Chile. Transboundary and Emerging Diseases69, e3462-e3468.

Boehringer D, Thermann R, Ostareck-Lederer A, Lewis J D, Stark H. 2005. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: Remodeling of the HCV IRES. Structure13, 1695–1706.

Brown Z P, Abaeva I S, De S, Hellen C U T, Pestova T V, Frank J. 2022. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. EMBO Journal41, e110581.

Buchholz U J, Finke S, Conzelmann K K. 1999. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. Journal of Virology73, 251–259.

Chard L S, Bordeleau M E, Pelletier J, Tanaka J, Belsham G J. 2006a. Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. Journal of General Virology87, 927–936.

Chard L S, Kaku Y, Jones B, Nayak A, Belsham G J. 2006b. Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. Journal of Virology80, 1271–1279.

Dong J, Rao D, He S, Jiao F, Yi B, Chen B, Leng C, Huang L. 2021. Emergence of a novel recombinant USA/GBI29/2015-like strain of Seneca Valley virus in Guangdong Province, 2018. Canadian Journal of Veterinary Research85, 224–228.

Fernandes M H V, de Lima M, Joshi L R, Diel D G. 2021. A virulent and pathogenic infectious clone of Senecavirus A. Journal of General Virology102, 001643.

Filbin M E, Kieft J S. 2011. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit’s decoding groove. RNA17, 1258–1273.

Finney D J. 1952. Statistical Method in Biological Assay. Charles Griffin and Company, London.

Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. 2022. Picornavirus translation strategies. FEBS Open Bio12, 1125–1141.

Friis M B, Rasmussen T B, Belsham G J. 2012. Modulation of translation initiation efficiency in classical swine fever virus. Journal of Virology86, 8681–8692.

Gosavi D, Wower I, Beckmann I K, Hofacker I L, Wower J, Wolfinger M T, Sztuba-Solinska J. 2022. Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. RNA Biology19, 496–506.

Guo Z, Chen X X, Ruan H, Qiao S, Deng R, Zhang G. 2020. Isolation of three novel Senecavirus A strains and recombination analysis among senecaviruses in China. Frontiers in Veterinary Science7, 2.

Hales L M, Knowles N J, Reddy P S, Xu L, Hay C, Hallenbeck P L. 2008. Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. Journal of General Virology89, 1265–1275.

Hashem Y, des Georges A, Dhote V, Langlois R, Liao H Y, Grassucci R A, Pestova T V, Hellen C U, Frank J. 2013. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature503, 539–543.

Honda M, Brown E A, Lemon S M. 1996. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA2, 955–968.

Ji H, Fraser C S, Yu Y, Leary J, Doudna J A. 2004. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proceedings of the National Academy of Sciences of the United States of America101, 16990–16995.

Jubin R, Vantuno N E, Kieft J S, Murray M G, Doudna J A, Lau J Y, Baroudy B M. 2000. Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. Journal of Virology74, 10430–10437.

Kaku Y, Chard L S, Inoue T, Belsham G J. 2002. Unique characteristics of a picornavirus internal ribosome entry site from the porcine teschovirus-1 talfan. Journal of Virology76, 11721–11728.

Khan D, Bhat P, Das S. 2014. HCV-like IRESs sequester eIF3: Advantage virus. Trends in Microbiology22, 57–58.

Kieft J S, Zhou K, Jubin R, Doudna J A. 2001. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA7, 194–206.

Knowles N J, Hales L M, Jones B H, Landgraf J G, House J A, Skele K L, Burroughs K D, Hallenbeck P L. 2006. Epidemiology of seneca valley virus: identification and characterization of isolates from pigs in the United States. Northern lights EUROPIC 2006: In: XIVth Meeting of the European Study Group on the Molecular Biology of Picornaviruses. Saariselkä, Inari, Finland.

Leme R A, Zotti E, Alcantara B K, Oliveira M V, Freitas L A, Alfieri A F, Alfieri A A. 2015. Senecavirus A: An Emerging Vesicular Infection in Brazilian Pig Herds. Transboundary and Emerging Diseases62, 603–611.

Li C, Wu X, Wang X, Shi J, Liu C, Peng Z, Han H, Xu S, Wang S, Ma Y, Zheng L, Hrabchenko N, Li J. 2022. Complete genome and pathogenesis of a novel recombinant Senecavirus A isolate in P.R. China. Journal of General Virology103, 1788.

Liu F, Huang Y, Wang Q, Li J, Shan H. 2021a. Rescue of Senecavirus A to uncover mutation profiles of its progenies during 80 serial passages in vitroVeterinary Microbiology253, 108969.

Liu F, Huang Y, Wang Q, Shan H. 2020. Construction of eGFP-Tagged Senecavirus A for facilitating virus neutralization test and antiviral assay. Viruses12, E283.

Liu F, Wang N, Huang Y, Wang Q, Shan H. 2021b. Stem II-disrupting pseudoknot does not abolish ability of Senecavirus A IRES to initiate protein expression, but inhibits recovery of virus from cDNA clone. Veterinary Microbiology255, 109024.

Liu F, Wang N, Wang Q, Shan H. 2021c. Motif mutations in pseudoknot stem I upstream of start codon in Senecavirus A genome: Impacts on activity of viral IRES and on rescue of recombinant virus. Veterinary Microbiology262, 109223.

Liu F, Wang Q, Meng H, Zhao D, Hao X, Zhang S, Lu J, Shan H. 2022. Experimental evidence for occurrence of putative copy-choice recombination between two Senecavirus A genomes. Veterinary Microbiology271, 109487.

Liu F, Wang Q, Wang N, Shan H. 2021d. Impacts of single nucleotide deletions from the 3’ end of Senecavirus A 5’ untranslated region on activity of viral IRES and on rescue of recombinant virus. Virology563, 126–133.

Liu J, Guo Q, Li H, Yu X, Liu B, Zhao B, Ning Z. 2020. Genomic diversity and recombination of Seneca Valley viruses emerged in pig herds in Guangdong Province during 2019. Virus Genes56, 642–645.

Liu J, Zha Y, Li H, Sun Y, Wang F, Lu R, Ning Z. 2019. Novel Recombinant seneca valley virus isolated from slaughtered pigs in Guangdong Province. Virologica Sinica34, 722–724.

Lukavsky P J. 2009. Structure and function of HCV IRES domains. Virus Research139, 166–171.

Martínez-Salas E. 1999. Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology10, 458–464.

Matsuda D, Mauro V P. 2014. Base pairing between hepatitis C virus RNA and 18S rRNA is required for IRES-dependent translation initiation in vivoProceedings of the National Academy of Sciences of the United States of America111, 15385–15389.

Meng H, Wang Q, Liu M, Li Z, Hao X, Zhao D, Dong Y, Liu S, Zhang F, Cui J, Ni B, Shan H, Liu F. 2022. The 5´-end motif of Senecavirus A cDNA clone is genetically modified in 36 different ways for uncovering profiles of virus recovery. Frontiers in Microbiology13, 957849.

Niepmann M, Gerresheim G K. 2020. Hepatitis c virus translation regulation. International Journal of Molecular Sciences21, 2328.

Oliveira T E S, Michelazzo M M Z, Fernandes T, de Oliveira A G, Leme R A, Alfieri A F, Alfieri A A, Headley S A. 2017. Histopathological, immunohistochemical, and ultrastructural evidence of spontaneous Senecavirus A-induced lesions at the choroid plexus of newborn piglets. Scientific Reports7, 16555.

Panthu B, Denolly S, Faivre-Moskalenko C, Ohlmann T, Cosset F L, Jalinot P. 2020. Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is not required for the translational activity of the HCV IRES. Journal of Biological Chemistry295, 1843–1856.

Pasma T, Davidson S, Shaw S L. 2008. Idiopathic vesicular disease in swine in Manitoba. Canadian Veterinary Journal49, 84–85.

Paul A V, Wimmer E. 2015. Initiation of protein-primed picornavirus RNA synthesis. Virus Research206, 12–26.

Pestova T V, de Breyne S, Pisarev A V, Abaeva I S, Hellen C U. 2008. eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: A common role of domain II. EMBO Journal27, 1060–1072.

Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N. 2015. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nature Communications6, 7646.

Saeng-Chuto K, Rodtian P, Temeeyasen G, Wegner M, Nilubol D. 2018. The first detection of Senecavirus A in pigs in Thailand, 2016. Transboundary and Emerging Diseases65, 285–288.

Singh K, Corner S, Clark S, Scherba G, Fredrickson R. 2012. Seneca valley virus and vesicular lesions in a pig with idiopathic vesicular disease. Journal of Veterinary Science & Technology3, 1–3.

Song X, Xia Y, Xu L, Zhao J, Wang Z, Zhao Q, Liu Y, Zhang Q, Wang Q. 2023. A multiplex real-time PCR assay for simultaneous detection of classical swine fever virus, African swine fever virus, and atypical porcine pestivirus. Journal of Integrative Agriculture22, 559–567.

Spahn C M, Kieft J S, Grassucci R A, Penczek P A, Zhou K, Doudna J A, Frank J. 2001. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science291, 1959–1962.

Wang Q, Meng H, Ge D, Shan H, Geri L, Liu F. 2023a. Structural and nonstructural proteins of Senecavirus A: Recent research advances, and lessons learned from those of other picornaviruses. Virology585, 155–163.

Wang Q, Zhao D, Wang L, Sang Y, Meng H, Shan H, Liu F, Geri L. 2023b. Translation of Senecavirus A polyprotein is initiated from the IRES-proximal initiation codon. Virology579, 67–74.

Wang Z, Zhang X, Yan R, Yang P, Wu Y, Yang D, Bian C, Zhao J. 2018. Emergence of a novel recombinant Seneca Valley virus in Central China, 2018. Emerging Microbes & Infections7, 180.

Willcocks M M, Locker N, Gomwalk Z, Royall E, Bakhshesh M, Belsham G J, Idamakanti N, Burroughs K D, Reddy P S, Hallenbeck P L, Roberts L O. 2011. Structural features of the Seneca Valley virus internal ribosome entry site (IRES) element: A picornavirus with a pestivirus-like IRES. Journal of Virology85, 4452–4461.

Willcocks M M, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids N A, Fahnøe U, Hadsbjerg J, Rasmussen T B, Roberts L O, Sargueil B, Belsham G J, Locker N. 2017. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Research45, 13016–13028.

Wu H, Li C, Ji Y, Mou C, Chen Z, Zhao J. 2022. The evolution and global spatiotemporal dynamics of Senecavirus A. Microbiol Spectr10, e0209022.

Wu Q, Zhao X, Bai Y, Sun B, Xie Q, Ma J. 2017. The first identification and complete genome of Senecavirus A affecting pig with idiopathic vesicular disease in China. Transboundary and Emerging Diseases64, 1633–1640.

Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh T R, Dabrowski M, Hildebrand P W, Scheerer P, Spahn C M. 2015. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO Journal34, 3042–3058.

Yamamoto H, Unbehaun A, Loerke J, Behrmann E, Collier M, Bürger J, Mielke T, Spahn C M. 2014. Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nature Structural & Molecular Biology21, 721–727.

Zeng W, Yan Q, Du P, Yuan Z, Sun Y, Liu X, Zhang L, Ding H, Yi L, Fan S, Chen J, Zhao M. 2023. Evolutionary dynamics and adaptive analysis of Seneca Valley virus. Infection Genetics and Evolution113, 105488.

No related articles found!
No Suggested Reading articles found!