Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2421-2433    DOI: 10.1016/j.jia.2023.11.049
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China
Wenjie Yang*, Jie Yu*, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu#, Zhaohui Wang#
Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

优化作物施肥管理对提高作物产量和减少化肥施用量具有重要意义。土壤养分临界值可用于评估作物的养分供应状况,它反映了作物达到最大潜在产量时所需的最低养分供应量。基于我国旱地麦区504户农户调研和60个田间试验数据,本文提出了一种确定冬小麦氮磷钾肥施用量的推荐施肥方法,并在我国北方66个不同地点进行了田间试验验证。结果表明:冬小麦籽粒产量变化范围为1.1-9.2 t hm-2,平均产量为4.6 t hm-2,且与收获期表层土壤(0-20 cm)硝态氮和速效磷含量呈二次函数关系,但与氮磷钾肥施用量无相关关系。根据60个田间试验中冬小麦相对产量与收获时表层土壤硝态氮、速效磷和速效钾含量的关系(指数函数),确定了冬小麦相对产量位于95-105%表层土壤硝态氮、速效磷和速效钾的养分临界值分别为34.6, 15.6150 mg kg-1。基于相对产量分组(>125%、115-125%、105-115%、95-105%、<95%)和指数函数模型,确定了每组表层土壤养分临界值和施肥系数(Fc)。基于此,本文提出了一种计算推荐施肥量的方法:Fr=Gy×Nr×Fc,其中Fr是推荐施肥量(氮磷钾肥料施用量),Gy是冬小麦百公斤籽粒氮磷钾养分需求量(NrN , NrP, NrK),Fc是氮磷钾肥料施用系数(Nc, Pc, Kc)。在我国北方,为期两年的田间验证试验表明,新的推荐施肥方法在保证产量的同时减少了17.5%的氮肥投入(38.5 kg N hm-2)和43.5%的磷肥投入(57.5 kg P2O5 hm-2),且可显著增加农户收益(7.58%,即139美元 hm-2)。因此,新的推荐施肥方法可指导我国旱地小麦氮磷钾肥料施用,促进化肥科学减肥。



Abstract  

The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers. Critical nutrient values can be used for evaluating the nutritional status of a crop, and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield. Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China, we proposed a recommended fertilization method to determine nitrogen (N), phosphorus (P), and potassium (K) fertilizer input rates for wheat production, and then validated the method by a field experiment at 66 different sites in northern China. The results showed that wheat grain yield varied from 1.1 to 9.2 t ha−1, averaging 4.6 t ha−1, and it had a quadratic relationship with the topsoil (0−20 cm) nitrate N and soil available P contents at harvest. However, yield was not correlated with the inputs of N, P, and K fertilizers. Based on the relationship (exponential decay model) between 95–105% of the relative yield and topsoil nitrate N, available P, and available K contents at wheat harvest from 60 field experiments, the topsoil critical nutrient values were determined as 34.6, 15.6, and 150 mg kg−1 for soil nitrate N, available P, and available K, respectively. Then, based on five groups of relative yield (>125%, 115–125%, 105–115%, 95–105%, and <95%) and the model, the five groups of topsoil critical nutrient levels and fertilization coefficients (Fc) were determined. Finally, we proposed a new method for calculating the recommended fertilizer input rate as: Fr=Gy×Nr×Fc, where Fr is the recommended fertilizer (N/P/K) input rate; Gy is the potential grain yield; Nr is the N(NrN), P(NrP), and K(NrK) nutrient requirements for wheat to produce 1,000 kg of grain; and Fc is a coefficient for N(Nc)/P(Pc)/K(Kc) fertilizer. A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5% (38.5 kg N ha−1) and P fertilizer input by 43.5% (57.5 kg P2O5 ha−1) in northern China and did not reduce the wheat yield. This outcome can significantly increase the farmers’ benefits (by 7.58%, or 139 US$ ha−1).  Therefore, this new recommended fertilization method can be used as a tool to guide N, P, and K fertilizer application rates for dryland wheat production.


Keywords:  fertilization method       dryland wheat       soil nutrient critical value       soil nitrogen       topsoil nutrients  
Received: 28 June 2023   Accepted: 13 October 2023
Fund: 
This work was financially supported by grants from the National Key Research and Development Program of China (2021YFD1900700 and 2018YFD0200401), the China Agricultural Research System (CARS-3), and the Science and Technology Research Program of Shaanxi Province, China (2022PT-06).
About author:  Wenjie Yang, E-mail: 1335645358@qq.com; Jie Yu, E-mail: 1291329379@qq.com; # Correspondence Weihong Qiu, Tel: +86- 29-87080055, E-mail: qwh@nwsuaf.edu.cn; Zhaohui Wang, Tel: +86-29-87080055, E-mail: zhwang@263.net * These authors contributed equally to this study.

Cite this article: 

Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. 2024. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China. Journal of Integrative Agriculture, 23(7): 2421-2433.

Bai Z H, Li H G, Yang X Y, Zhou B K, Shi X J, Wang B R, Li D C, Shen J B, Chen Q, Qin W, Oenema O, Zhang F S. 2013. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil372, 27–37.

Bollons H, Barraclough P. 1999. Assessing the phosphorus status of winter wheat crops: Inorganic orthophosphate in whole shoots. The Journal of Agricultural Science133, 285–295.

Bouwman A F, Beusen A, Lassaletta L, Apeldoorn D, Grinsven H, Zhang J, Van M. 2017. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports7, 40366.

Breker J S, DeSutter T, Rakkar M K, Chatterjee A, Sharma L, Franzen D W. 2019. Potassium requirements for corn in North Dakota: Influence of clay mineralogy. Soil Science Society of America Journal83, 429–436.

Cao H B, Wang Z H, He G, Dai J, Malhi S S. 2017. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Research209, 88–95.

Cao H B, Wang Z H, Shi Y C, Du M Y, Lei X Q, Zhang W Z, Zhang L, Pu Y J. 2014. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei Dryland. Scientia Agricultura Sinica47, 3826–3838. (in Chinese)

Cate R B, Nelson L A. 1971. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Journal35, 658–660.

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chen S, Lin B W, Li Y Q, Zhou S N. 2020. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma357, 113937.

Colomb B, Debaeke P, Jouany C, Nolot J M. 2007. Phosphorus management in low input stockless cropping systems: Crop and soil responses to contrasting P regimes in a 36-year experiment in southern France. European Journal of Agronomy26, 154–165.

Cui Z L, Chen X P, Zhang F S. 2013. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal105, 1411–1416.

Cui Z L, Chen X P, Zhang F S, Xu J F, Shi L W, Li J L. 2007. Appropriate soil nitrate N content for winter wheat/summer maize rotations systems in North China Plain. Chinese Journal of Applied Ecology18, 2227–2232. (in Chinese)

Dai J, Wang Z H, Li F C, He G, Wang S, Li Q, Cao H B, Luo L C, Zan Y L, Meng X Y, Zhang W W, Wang R H, Malhi S S. 2015. Optimizing nitrogen input by balancing winter wheat yield and residual nitrate-N in soil in a long-term dryland field experiment in the Loess Plateau of China. Field Crops Research181, 32–41.

FAOSTAT. 2020. Online statistical database: Agriculture Production. [2020-11-10]. https://www.fao.org/faostat/en/#data/QC

Gao Z Y, Cao H B, Huang M, Bao M, Qiu W H, Liu J S. 2023. Winter wheat yield and soil critical phosphorus value response to yearly rainfall and P fertilization on the Loess Plateau of China. Field Crops Research296, 108921.

Gichangi E M, Gatheru M, Njiru E N, Mungube E O, Wambua J M, Wamuongo J W. 2015. Assessment of climate variability and change in semi-arid eastern Kenya. Climatic Change130, 287–297.

Gong Z, Zhang G, Chen Z. 2003. Development of soil classification in China. In: Eswaran H, ed., Soil ClassificationChemical Rubber Company (CRC) Press, Boca Raton. pp. 101–125.

He P, Xu X P, Zhou W, Smith W, He W T, Grant B, Ding W C, Qiu S J, Zhao S C. 2022. Ensuring future agricultural sustainability in China utilizing an observationally validated nutrient recommendation approach. European Journal of Agronomy132, 126409.

Hou S B, Dang H Y, Huang T M, Huang Q N, Li C, Li X H, Sun Y Y, Chu H X, Qiu W H, Liu J S, Shi M, He G, Siddique K H M, Wang Z H. 2023. Targeting high nutrient efficiency to reduce fertilizer input in wheat production of China. Field Crops Research292, 108809.

Huang M, Wang Z H, Luo L C, Wang S, Malhi S S. 2017. Soil testing at harvest to enhance productivity and reduce nitrate residues in dryland wheat production. Field Crops Research212, 153–164.

Huang Q N, Wang Z H, Huang T M, Hou S B, Zhang X, Ma Q X, Zhang X X. 2018. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica51, 2722–2734. (in Chinese)

Jia S H, Zhou D, Xu D Y. 2011. The temporal and spatial variability of soil properties in an agricultural system as affected by farming practices in the past 25 years. Journal of Food Agriculture and Environment9, 669–676.

Ju X T, Christie P. 2011. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Research124, 450–458.

Khan A, Lu G Y, Ayaz M, Zhang H T, Wang R J, Lv F L, Yang X Y, Sun B H, Zhang S L. 2018. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture Ecosystems & Environment256, 1–11.

Krusekopf H H, Mitchell J P, Hartz T K, May D M, Cahn M. 2002. Pre-sidedress soil nitrate testing identifies processing tomato fields not requiring sidedress N fertilizer. Hortscience37, 520–524.

Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X, Jiang R, Zhang F. 2011. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil349, 157–167.

Li S T, Yu D, Guo T W, Zhang P L, He P, Johnston A, Shcherbakov A. 2015. Potassium management in potato production in Northwest region of China. Field Crops Research174, 48–54.

Liu H, Wang Z H, Yu R, Li F C, Li K Y, Cao H B, Yang N, Li M H, Dai J, Zan Y L, Li Q, Xue C, He G, Huang D L, Huang M, Liu J S, Qiu W H, Zhao H B, Mao H. 2016a. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. AgricultureEcosystems & Environment224, 1–11.

Liu J G, You L Z, Amini M, Obersteiner M, Herrero M, Zehnder A J B, Yang H. 2010. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences of the United States of America107, 8035–8040.

Liu X, Sheng H, Jiang S Y, Yuan Z W, Zhang C S, Elser J. 2016b. Intensification of phosphorus cycling in China since the 1600s. Proceedings of the National Academy of Sciences of the United States of America113, 2609–2614.

Lu J, Bai Z H, Velthof G L, Wu Z G, Chadwick D, Ma L. 2019. Accumulation and leaching of nitrate in soils in wheat–maize production in China. Agricultural Water Management212, 407–415.

Macdonald G K, Bennett E M, Potter P A, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America108, 3086–3091.

Ni B, Zhang W, Xu X C, Wang L G, Bol R, Wang K Y, Hu Z J, Zhang H X, Meng F Q. 2021. Exponential relationship between N2O emission and fertilizer nitrogen input and mechanisms for improving fertilizer nitrogen efficiency under intensive plastic-shed vegetable production in China: A systematic analysis. AgricultureEcosystems & Environment312, 107353.

Poulton P R, Johnston A E, White R P. 2013. Plant-available soil phosphorus. Part I: The response of winter wheat and spring barley to Olsen P on a silty clay loam. Soil Use and Management29, 4–11.

Qiu W H, Ma X L, Cao H B, Huang T M, She X, Huang M, Wang Z H, Liu J S. 2022. Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau. Agricultural Water Management264, 107489.

Ren K Y, Xu M G, Li R, Zheng L, Liu S G, Reis S, Wang H Y, Lu C G, Zhang W J, Gao H, Duan Y H, Gu B J. 2022. Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production360, 132180.

Ren Y, Zhang S X, Lan M U, Tian Y G, Chang-Ai L U. 2009. Change and difference of soil nutrients for various regions in China. Soil and Fertilizer Sciences in China6, 13–17. (in Chinese)

Sandaña P, Orena S, Rojas J S, Kalazich J, Uribe M. 2020. Critical value of soil potassium for potato crops in volcanic soils. Journal of Soil Science and Plant Nutrition20, 1171–1177.

Singh J, Brar B S, Sekhon B S, Mavi M S, Singh G, Kaur G. 2016. Impact of long-term phosphorous fertilization on Olsen-P and grain yields in maize–wheat cropping sequence. Nutrient Cycling in Agroecosystems106, 1–12.

Song X D, Liu F, Wu H Y, Cao Q, Zhang G L. 2020. Effects of long-term K fertilization on soil available potassium in East China. Catena188, 104412.

Sucunza F A, Boem F G, Garcia F O, Boxler M, Rubio G. 2018. Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances. European Journal of Agronomy96, 87–95.

Tan D S, Jin J Y, Jiang L H, Huang S W, Liu Z H. 2012. Potassium assessment of grain producing soils in North China. Agriculture Ecosystems & Environment148, 65–71.

Tang X, Ma Y B, Hao X Y, Li X Y, Li J M, Huang S M, Yang X Y. 2009. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil323, 143–151.

Ubugunov L L, Enkhtuyaa B, Merkusheva M G. 2015. The content of available mineral phosphorus compounds in chestnut soils of Northern Mongolia upon application of different forms of phosphorite. Eurasian Soil Science48, 634–642.

Wang J L, Dong J Y, Wang Y B, He J L, Ouyang C Q. 2011. The design of an optimal decision-making algorithm for fertilization. Mathematical and Computer Modelling54, 1100–1106.

Wang X N, Wang Z H, Li S X. 2006. Soil nitrogen balance in winter wheat and summer maize rotation system on dryland of Loess Plateau. Plant Nutrition and Fertilizer Science 12, 759–764. (in Chinese)

Wang X S, Mi X T, Sun L Q, He G, Wang Z H. 2023. Straw return cannot prevent soil potassium depletion in wheat fields of drylands. European Journal of Agronomy143, 126728.

Xi B, Zhai L M, Liu J, Liu S, Wang H Y, Luo C Y, Ren T Z, Liu H B. 2016. Long-term phosphorus accumulation and agronomic and environmental critical phosphorus levels in Haplic Luvisol soil, northern China. Journal of Integrative Agriculture15, 200–208.

Xu T, Ma Y B, Hao X Y, Li X Y, Li J M, Huang S M, Yang X Y, 2009. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 323, 143–151.

Xu X P, He P, Qiu S J, Zhao S C, Ding W C, Zhou W. 2022. Nutrient management increases potato productivity and reduces environmental risk: Evidence from China. Journal of Cleaner Production369, 133357.

Yang S M, Li F M, Malhi S, Wang P, Suo D G, Wang J G. 2004. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China. Agronomy Journal96, 1039–1049.

Yu S B, Khan S, Mo F, Ren A X, Lin W, Feng Y, Dong S F, Ren J, Wang W X, Noor H, Yang Z P, Sun M, Gao Z Q. 2021. Determining optimal nitrogen input rate on the base of fallow season precipitation to achieve higher crop water productivity and yield. Agricultural Water Management246, 106689.

Yuan M, Fernández F G, Pittelkow C M, Greer K D, Schaefer D. 2020. Soil and crop response to phosphorus and potassium management under conservation tillage. Agronomy Journal112, 2302–2316.

Zhang H M, Yang X Y, He X H, Xu M G, Huang S M, Liu H, Wang B R. 2011. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat–maize rotation in China. Pedosphere21, 154–163.

Zhang J T, Lu C A, Wang J Z, Shan H X, Xu M G, Ren Y, Tian Y G. 2010. The change of farmland soil fertility in fluvo aquic soil district of China. Soil and Fertilizer Sciences in China5, 6–10. (in Chinese)

Zhang M Q, Li J, Kong Q B, Yan F. 2016. Progress and prospect of the study on crop-response-to-fertilization function model. Acta Pedologica Sinica53, 1344–1356. (in Chinese)

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhang X, Li X, Luo L, Ma Q, Ma Q, Hui X, Wang S, Liu J, Wang Z. 2019. Monitoring wheat nitrogen requirement and top soil nitrate for nitrate residue controlling in drylands. Journal of Cleaner Production241, 118372.

Zhou M H, Butterbach-Bahl K. 2014. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant and Soil374, 977–991.

Zhou J Y, Gu B J, Schlesinger W H, Ju X T. 2016. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports6, 25088.

[1] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[2] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[3] TIAN Zhong-wei, LIU Xiao-xue, GU Shi-lu, YU Jin-hong, ZHANG Lei, ZHANG Wei-wei, JIANG Dong, CAO Wei-xing, DAI Ting-bo. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2648-2661.
[4] LONG Pan, SUI Peng, GAO Wang-sheng, WANG Bin-bin, HUANG Jian-xiong, YAN Peng, ZOU Juan-xiu, YAN Ling-ling, CHEN Yuan-quan. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs[J]. >Journal of Integrative Agriculture, 2015, 14(4): 774-787.
[5] DUAN Ying-hua, SHI Xiao-jun, LI Shuang-lai, SUN Xi-fa , HE Xin-hua. Nitrogen Use Efficiency as Affected by Phosphorus and Potassium in Long-Term Rice and Wheat Experiments[J]. >Journal of Integrative Agriculture, 2014, 13(3): 588-596.
No Suggested Reading articles found!