Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 3129-3144    DOI: 10.1016/j.jia.2023.10.008
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Supplementation of Lycium barbarum residue increases the growth rate of Tan sheep by enhancing their feed intake and regulating their rumen microbiome and metabolome
Yajun Zhang1, Xiao Chang2, Bing Wang3, Dawei Wei4, Rongzhen Zhong2, Yansheng Guo4, Min Du5, Guijie Zhang1, 4#
1 College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
2 Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences, Changchun 130102, China
3 State Key Laboratory of Animal Nutrition/College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
4 College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
5 Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本试验旨在研究枸杞渣对滩羊生长性能、瘤胃发酵参数、瘤胃微生物菌群及代谢组的影响。选取4月龄左右、体重[(20.8 ± 0.34)kg]相近和健康状况良好的滩羔羊16只,随机分为对照组和试验组,每组8只。对照组饲喂基础饲粮,试验组在基础饲粮中添加5%枸杞渣,每天饲喂2次。预试期10 d,正试期60 d。试验结束后,采集瘤胃液,测定发酵参数、瘤胃微生物群落结构及代谢产物。结果表明:1)与对照组相比,饲粮中添加5%枸杞渣显著增加了滩羊平均日采食量和平均日增重(P<0.05)。2)与对照组相比,饲粮中添加5%枸杞渣极显著增加了瘤胃液挥发性脂肪酸P<0.01),显著降低了氨含量和瘤胃pH值(P<0.05)3)多样性分析发现,2组间微生物Alpha多样性指数和Beta多样性差异显著(P<0.05)。微生物组成分析发现,在门水平上,试验组极显著增加了拟杆菌门、厚壁菌门、软壁菌门和蓝藻菌门的相对丰度(P<0.01),极显著降低了变形菌门、螺旋菌门和互养菌门的相对丰度(P<0.01)。在属水平上,添加枸杞渣显著增加普雷沃菌属琥珀酸菌属瘤胃球菌属粪球菌属月形单胞菌属丁酸弧菌属的相对丰度P<0.05)显著降低了颤螺旋菌属琥珀酸弧菌属的相对丰度P<0.05)4)通过代谢组学分析,共检测出431种差异代谢物。与对照组相比,试验组有287种差异代谢物显著上调,其中显著提高了氨基酸类(L -脯氨酸、L-苯丙氨酸、L-赖氨酸和L -酪氨酸、嘧啶代谢类(如尿嘧啶、尿嘧啶和胸腺嘧啶和微生物蛋白合成类(如黄嘌呤和次黄嘌呤等代谢产物的含量(P<0.05)富集差异显著的代谢通路有嘧啶代谢,苯丙氨酸、酪氨酸和色氨酸的生物合成,精氨酸和脯氨酸代谢以及苯丙氨酸代谢综上所述,饲粮中添加5%枸杞渣能改善滩羊生长性能,能够调节瘤胃菌群结构,影响瘤胃代谢物含量,改善瘤胃内环境。我们的研究结果表面了饲粮中添加枸杞渣对滩羊生长的促进作用,为其在反刍动物实际生产应用中提供了理论依据。



Abstract  

Lycium barbarum residue (LBR), a by-product of L. barbarum processing, is packed with bioactive components and can be potentially utilized as a feed additive in animal husbandry.  However, the fundamental understanding of its effectiveness on livestock animals is still lacking, particularly in ruminants.  To explore the effects of LBR on the growth performance, rumen fermentation parameters, ruminal microbes and metabolites of Tan sheep, sixteen fattening rams (aged 4 mon) were fed a basal diet (CON, n=8) or a basal diet supplemented with 5% LBR (LBR, n=8).  The experiment lasted for 70 d, with 10 d adaptation period and 60 d treatment period.  The results showed that the LBR enhanced the average daily feed intake, average daily gain (P<0.05), and ruminal total volatile fatty acids (P<0.01) while decreasing ammonia-nitrogen concentration and rumen pH value (P<0.05).  Additionally, the LBR improved the relative abundances of Prevotella, Succiniclasticum, Ruminococcus, Coprococcus, Selenomonas, and Butyrivibrio (P<0.05) and reduced the relative abundances of Oscillospira and Succinivibrio (P<0.05).  The LBR altered the ruminal metabolome (P<0.01) by increasing the abundances of ruminal metabolites involved in amino acids (e.g., L-proline, L-phenylalanine, L-lysine, and L-tyrosine), pyrimidine metabolism (e.g., uridine, uracil, and thymidine), and microbial protein synthesis (e.g., xanthine and hypoxanthine).  In conclusion, LBR had positive effects on the growth rate of Tan sheep as well as on rumen fermentation parameters, rumen microbiome and rumen metabolome.

Keywords:  Lycium barbarum residue       rumen microbiome       metabolomics       growth performance       Tan sheep  
Received: 17 February 2023   Accepted: 27 July 2023
Fund: 
This study was supported by the National Key Research and Development Program of China (2022YFD1300905), the National Natural Science Foundation of China (31960672), the Key Research and Development Program of Ningxia Hui Autonomous Region, China (2021BEF02020), the Top Discipline Construction Project of Pratacultural Science (NXYLXK2017A01), the Science and Technology Development Project of Jilin Province, China (20200201140JC), and the Technology Cooperation High-Tech Industrialization Project of Jilin Province, China and the Chinese Academy of Sciences, (2022SYHZ0020).

About author:  Yajun Zhang, E-mail: zhangyajun1106@126.com; #Correspondence Guijie Zhang, Tel: +86-951-2062861, E-mail: guijiezhang@nxu.edu.cn

Cite this article: 

Yajun Zhang, Xiao Chang, Bing Wang, Dawei Wei, Rongzhen Zhong, Yansheng Guo, Min Du, Guijie Zhang. 2024. Supplementation of Lycium barbarum residue increases the growth rate of Tan sheep by enhancing their feed intake and regulating their rumen microbiome and metabolome. Journal of Integrative Agriculture, 23(9): 3129-3144.

Ametaj B N, Zebeli Q, Saleem F, Psychogios N, Lewis M J, Dunn S M, Xia J, Wishart D S. 2010. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics6, 583–594.

Andries J I, Buysse F X, De Brabander D L, Cottyn B G. 1987. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances – A review. Animal Feed Science and Technology18, 169–180.

AOAC (Association of Official Analytical Chemists)2000. Official Methods of Analysis. 17th ed. The Association of Official Analytical Chemists, International, Arlington.

Bach A, Calsamiglia S, Stern M D. 2005. Nitrogen metabolism in the rumen. Journal of Dairy Science88, E9–E21.

Bokulich N A, Kaehler B D, Rideout J R, Dillon M, Bolyen E, Knight R, Huttley G A ,Gregory Caporaso J. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome6, 1–17.

Brulc J M, Antonopoulos D A, Berg Miller M E, Wilson M K, Yannarell A C, Dinsdale E A, Edwards R E, Frank E D, Emerson J B, Wacklin P, Coutinho P M, Henrissat B, Nelson K E, White B A. 2009. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America106, 1948–1953.

Carberry C A, Kenny D A, Han S, McCabe M S, Waters S M. 2012. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Applied and Environmental Microbiology78, 4949–4958.

Castanon J I R. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science86, 2466–2471.

Ceconi I, Ruiz-Moreno M J, Dilorenzo N, Dicostanzo A, Crawford G I. 2015. Effect of urea inclusion in diets containing corn dried distillers grains on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index. Journal of Animal Science93, 357–369.

Chen H, Guo B, Yang M, Luo J, Hu Y, Qu M, Song X. 2021. Response of growth performance, blood biochemistry indices, and rumen bacterial diversity in lambs to diets containing supplemental probiotics and Chinese medicine polysaccharides. Frontiers in Veterinary Science8, 681389.

Chen J, Long L, Jiang Q, Kang B, Li Y, Yin J. 2020. Effects of dietary supplementation of Lycium barbarum polysaccharides on growth performance, immune status, antioxidant capacity and selected microbial populations of weaned piglets. Journal of Animal Physiology and Animal Nutrition104, 1106–1115.

Cheng D, Kong H. 2011. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules16, 2542–2550.

Clemmons B A, Powers J B, Campagna S R, Seay T B, Embree M M, Myer P R. 2020. Rumen fluid metabolomics of beef steers differing in feed efficiency. Metabolomics16, 1–9.

Cremonesi P, Curone G, Biscarini F, Cotozzolo E, Menchetti L, Riva F, Marongiu M L, Castiglioni B, Barbato O, Munga A, Castrica M, Vigo D, Sulce M, Quattrone A, Agradi S, Brecchia G. 2022. Dietary Supplementation with Goji Berries (Lycium barbarum) modulates the microbiota of digestive tract and caecal metabolites in rabbits. Animals12, 121.

Dijkstra J, Ellis J L, Kebreab E, Strathe A B, López S, France J, Bannink A. 2012. Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology172, 22–33.

Dunn W B, Broadhurst D, Begley P, Zelena E, Francis-Mcintyre S, Anderson N, Brown M, Knowles J D, Halsall A, Haselden J N, Nicholls A W, Wilson I D, Kell D B, Goodacre R. 2011. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols6, 1060–1083.

Emerson E L, Weimer P J. 2017. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Applied Microbiology and Biotechnology101, 4269–4278.

Farghaly M M, Abdullah M A M, Youssef I M I, Abdel-Rahim I R, Abouelezz K. 2019. Effect of feeding hydroponic barley sprouts to sheep on feed intake, nutrient digestibility, nitrogen retention, rumen fermentation and ruminal enzymes activity. Livestock Science228, 31–37.

Fernando S C, Purvis H T, Najar F Z, Sukharnikov L O, Krehbiel C R, Nagaraja T G, Roe B A, De Silva U. 2010. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology76, 7482–7490.

Flint H J, Scott K P, Duncan S H, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes3, 289–306.

Gao Y, Wei Y, Wang Y, Gao F, Chen Z. 2017. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent. Aging and Disease8, 778–791.

He Y, Qiu Q, Shao T, Niu W, Xia C, Wang H, Li Q, Gao Z, Yu Z, Su H, Cao B. 2017. Dietary alfalfa and calcium salts of long-chain fatty acids alter protein utilization, microbial populations, and plasma fatty acid profile in Holstein freemartin heifers. Journal of Agricultural and Food Chemistry65, 10859–10867.

Hippe B, Remely M, Aumueller E, Pointner A, Haslberger A G. 2015. SCFA producing gut microbiota and its effects on the epigenetic regulation of inflammation. Beneficial Microorganisms in Medical and Health Applications28, 181–197.

Hu W L, Liu J X, Ye J A, Wu Y M, Guo Y Q. 2005. Effect of tea saponin on rumen fermentation in vitroAnimal Feed Science and Technology120, 333–339.

Ji Y, Guo Q, Yin Y, Blachier F, Kong X. 2018. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs. Journal of Animal Science and Biotechnology9, 1–11.

Kajikawa H, Mitsumori M, Ohmomo S. 2002. Stimulatory and inhibitory effects of protein amino acids on growth rate and efficiency of mixed ruminal bacteria. Journal of Dairy Science85, 2015–2022.

Klevenhusen F, Petri R M, Kleefisch M T, Khiaosa-ard R, Metzler-Zebeli B U, Zebeli Q. 2017. Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount. FEMS Microbiology Ecology93, fix100.

Kopečný J, Zorec M, Mrázek J, Kobayashi Y, Marinšek-Logar R. 2003. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. International Journal of Systematic and Evolutionary Microbiology53, 201–209.

Li F, Li Z, Li S, Ferguson J D, Yang T. 2014. Effect of dietary physically effective fiber on ruminal fermentation and the fatty acid profile of milk in dairy goats. Journal of Dairy Science97, 2281–2291.

Lian Y Z, Lin I H, Yang Y C, Chao J C J. 2020. Gastroprotective effect of Lycium barbarum polysaccharides and C-phyocyanin in rats with ethanol-induced gastric ulcer. International Journal of Biological Macromolecules165, 1519–1528.

Liu Y L, Yin R Q, Liang S S, Duan Y L, Yao J H, Duan Y L, Yang X J. 2017. Effect of dietary Lycium barbarum polysaccharide on growth performance and immune function of broilers. Journal of Applied Poultry Research26, 200–208.

Long L N, Kang B J, Jiang Q, Chen J S. 2020. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. Poultry Science99, 744–751.

Lu Y, Guo S, Zhang F, Yan H, Qian D W, Wang H Q, Jin L, Duan J A. 2019. Comparison of functional components and antioxidant activity of lycium barbarum L. fruits from different regions in China. Molecules24, 2228.

Ma X K, Shang Q H, Wang Q Q, Hu JX, Piao X S. 2019. Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs. Animal Feed Science and Technology248, 47–58.

Mariz L D S, Amaral P M, Valadares Filho S C, Santos S A, Detmann E, Marcondes M I, Pereira J M V, Silva Júnior J M, Prados L F, Faciola A P. 2018. Dietary protein reduction on microbial protein, amino acid digestibility, and body retention in beef cattle: 2. amino acid intestinal absorption and their efficiency for whole-body deposition. Journal of Animal Science96, 670–683.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal17, 10–12.

Menchetti L, Curone G, Andoni E, Barbato O, Troisi A, Fioretti B, Polisca A, Codini M, Canali C, Vigo D, Brecchia G. 2020. Impact of goji berries (Lycium barbarum) supplementation on the energy homeostasis of rabbit does: Uni- and multivariate approach. Animals10, 2000.

Menchetti L, Vecchione L, Filipescu I, Petrescu V F, Fioretti B, Beccari T, Ceccarini M R, Codini M, Quattrone A, Trabalza-Marinucci M, Barbato O, Brecchia G. 2019. Effects of Goji berries supplementation on the productive performance of rabbit. Livestock Science220, 123–128.

Qiao J, Li H H, Zheng C J, Feng Z Y, Wang W. 2013. Dietary supplementation with Aloe vera polysaccharide enhances the growth performance and immune function of weaned piglets. Journal of Animal and Feed Sciences22, 329–334.

Ruíz-Salinas A K, Vázquez-Roque R A, Díaz A, Pulido G, Treviño S, Floran B, Flores G. 2020. The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. The Journal of Nutritional Biochemistry83, 108416.

Saleem F, Bouatra S, Guo A C, Psychogios N, Mandal R, Dunn S M, Ametaj B N, Wishart D S. 2013. The bovine ruminal fluid metabolome. Metabolomics9, 360–378.

Shen J, Chen Y, Moraes L E, Yu Z, Zhu W. 2018. Effects of dietary protein sources and nisin on rumen fermentation, nutrient digestion, plasma metabolites, nitrogen utilization, and growth performance in growing lambs. Journal of Animal Science96, 1929–1938.

Singh K M, Reddy B, Patel A K, Panchasara H, Parmar N, Patel A B, Shah T M, Bhatt V D, Joshi C G. 2014. Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes. Meta Gene2, 252–268.

Smith C A, Want E J, O’Maille G, Abagyan R, Siuzdak G. 2006. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry78, 779–787.

Van Soest P J, Robertson J B, Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74, 3583–3597.

Sóki J, Wybo I, Hajdú E, Toprak N U, Jeverica S, Stingu C S, Tierney D, Perry J D, Matuz M, Urbán E, Nagy E. 2020. A Europe-wide assessment of antibiotic resistance rates in Bacteroides and Parabacteroides isolates from intestinal microbiota of healthy subjects. Anaerobe62, 102182.

Tu Y, Zhang G F, Deng K D, Zhang N F, Diao Q Y. 2015. Effects of supplementary bee pollen and its polysaccharides on nutrient digestibility and serum biochemical parameters in Holstein calves. Animal Production Science55, 1318–1323.

Wang B, Ma M P, Diao Q Y, Tu Y. 2019. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Frontiers in Microbiology10, 356.

Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Hua D, Zhang F, Wang Y, Liu J, Yao J, Xiong B. 2021. Dietary supplementation with inulin improves lactation performance and serum lipids by regulating the rumen microbiome and metabolome in dairy cows. Animal Nutrition7, 1189–1204.

Yi R, Liu X M, Dong Q. 2013. A study of Lycium barbarum polysaccharides (LBP) extraction technology and its anti-aging effect. African Journal of TraditionalComplementary and Alternative Medicines10, 171–174.

Yin F, Yin Y, Kong X, Liu Y, He Q, Li T, Huang R, Hou Y, Shu X, Tan L, Chen L, Gong J, Kim S W, Wu G. 2008. Dietary supplementation with Acanthopanax senticosus extract modulates gut microflora in weaned piglets. Asian-Australasian Journal of Animal Sciences21, 1330–1338.

Yin F G, Liu Y L, Yin Y L, Kong X F, Huang R L, Li T J, Wu G Y, Hou Y. 2009. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids37, 263–270.

Yu S, Shi W, Yang B, Gao G, Chen H, Cao L, Yu Z, Wang J. 2020. Effects of repeated oral inoculation of artificially fed lambs with lyophilized rumen fluid on growth performance, rumen fermentation, microbial population and organ development. Animal Feed Science and Technology264, 114465.

Zhang J, Shi H, Wang Y, Li S, Cao Z, Ji S, He Y, Zhang H. 2017. Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers. Frontiers in Microbiology8, 2206.

[1] Yang Cao, Peihua Du, Yuwei Shang, Jiahao Ji, Leiqing Tan, Xue Zhang, Jizhong Xu, Bowen Liang. Melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2270-2291.
[2] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[3] GUO Yun-xia, YANG Ruo-chen, DUAN Chun-hui, WANG Yong, HAO Qing-hong, JI Shou-kun, YAN Hui, ZHANG Ying-jie, LIU Yue-qin. Effect of dioscorea opposite waste on growth performance, blood parameters, rumen fermentation and rumen bacterial community in weaned lambs[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1833-1846.
[4] GAO Ting, HOU Bing-hao, SHAO Shu-xian, XU Meng-ting, ZHENG Yu-cheng, JIN Shan, WANG Peng-jie, YE Nai-xing. Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3346-3363.
[5] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[6] REN Chuan-ying, LU Shu-wen, GUAN Li-jun, HONG Bin, ZHANG Ying-lei, HUANG Wen-gong, LI Bo, LIU Wei, LU Wei-hong.

The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2767-2776.

[7] HUANG Wen-qin, CUI Kai, HAN Yong, CHAI Jian-min, WANG Shi-qin, LÜ Xiao-kang, DIAO Qi-yu, ZHANG Nai-feng. Long term effects of artificial rearing before weaning on the growth performance, ruminal microbiota and fermentation of fattening lambs[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1146-1160.
[8] ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 878-891.
[9] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[10] LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu. Metabolic responses to combined water deficit and salt stress in maize primary roots[J]. >Journal of Integrative Agriculture, 2021, 20(1): 109-119.
[11] WANG Chuan-long, XING Guan-zhong, WANG Li-sai, LI Su-fen, ZHANG Li-yang, LU Lin, LUO Xu-gang, LIAO Xiu-dong . Effects of selenium source and level on growth performance, antioxidative ability and meat quality of broilers[J]. >Journal of Integrative Agriculture, 2021, 20(1): 227-235.
[12] LIU Guo-qing, SUN Guang-ming, LIAO Xiu-dong, HUANG Jian-zhong, GUO Mei-jin, ZHANG Li-yang, GUO Yan-li, LU Lin, LUO Xu-gang. Effect of dietary supplementation of pyrroloquinoline quinone disodium on growth performance, meat quality and antioxidative ability of broilers[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1850-1856.
[13] ZHANG Zhen, LIU Qiang, WANG Cong, GUO Gang, HUO Wen-jie, ZHANG Yan-li, PEI Cai-xia, ZHANG Shuan-lin. Effects of palm fat powder and coated folic acid on growth performance, ruminal fermentation, nutrient digestibility and hepatic fat accumulation of Holstein dairy bulls[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1074-1084.
[14] ZHOU ying, ZHANG Min-hong, FENG Jing-hai, DIAO Hua-jie. Effect of relative humidity at chronic temperature on growth performance, glucose consumption, and mitochondrial ATP production of broilers[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1321-1328.
[15] FAN Cai-yun, SU Di, TIAN He, HU Rui-ting, RAN Lei, YANG Ying, SU Yan-jing, CHENG Jian-bo. Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2844-2854.
No Suggested Reading articles found!