Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2271-2281    DOI: 10.1016/j.jia.2023.06.003
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice

SHI Shi-jie1*, ZHANG Gao-yu1*, CAO Cou-gui1, 2, JIANG Yang1, 2#

1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China

2 Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Abstract  Geographical indication (GI) rice refers to the rice of specific geographical origin, which tends to have a good taste quality and a high commodity price.  Rice is favored for its soft texture and chewiness after cooking.  However, GI rice is also plagued by rice fraud.  Understanding the reasons for the excellent taste quality of GI rice and identifying its geographical origin can help maintain the stability of the rice market and promote the development of the rice industry.  In this study, we determined the taste quality of rice.  Untargeted metabolomics based on UHPLC–Q-Exactive-MS was used to identify metabolites in GI and regular rice before and after cooking.  Our findings suggested that GI rice showed lower protein and amylose content, resulting in higher starch gelatinization properties and taste quality.  This study identified 520 metabolites, among which 142 and 175 were significantly different between GI and regular rice, before and after cooking, respectively.  The increased variety of metabolites after cooking was significantly negatively correlated with the taste quality of rice.  GI rice was lower in amino acids and lipid metabolite content before and after cooking, which may be the reason for the excellent taste quality.  Through linear discriminant analysis, we found that the differential metabolites of rice after cooking were more accurate in discriminating rice from different geographic origins, up to 100%.  This work gained new insights into the metabolites of GI rice, which explains its excellent taste quality.  The rice metabolites after cooking could be used for more accurate geographical identification of rice.
Keywords:  rice        metabolomics        taste quality        before cooking        after cooking  
Received: 23 December 2022   Accepted: 18 May 2023
Fund: This work was supported by the National Natural Science Foundation of China (32272204), the Key Project of Hongshan Laboratory of Hubei Province, China (2021hszd002), the Guangdong Provincial Key R&D Program of China (2021B0202030002), the Strategic Consulting Research Project of Chinese Academy of Engineering (2021-XZ-30), and the Fundamental Research Funds for the Central Universities, China (2662019QD049).
About author:  SHI Shi-jie, E-mail:; ZHANG Gao-yu, E-mail:; #Correspondence JIANG Yang, E-mail: * These authors contributed equally to this study. These authors contribute equally

Cite this article: 

SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . 2023. Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice. Journal of Integrative Agriculture, 22(7): 2271-2281.

Banks W, Greenwood C T. 1972. On hydrogen bonding in amylose. Biopolymers11, 315–318.

Bergman C J. 2019. Rice end-use quality analysis. In: Bao J, ed., Rice. 4th ed. International Association of Cereal Chemists International Press, the Netherlands. pp. 273–337.

Bi X, Asimi S, Zhang M, Zhou Q, Yang Z. 2019. Effects of fatty acids on taste quality of cooked rice. Food Science40, 8–14. (in Chinese)

Bogadi N P, Banović M, Babić I. 2016. Food defence system in food industry: Perspective of the EU countries. Journal of Consumer Protection and Food Safety11, 217–226.

Bryant R J, Anders M, McClung A M. 2009. Effect of cultural management practices on grain quality of two rice cultivars. Cereal Chemistry86, 405–409.

Ch R, Chevallier O, McCarron P, McGrath T F, Wu D, Nguyen Doan Duy L, Kapil A P, McBride M, Elliott C T. 2021. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chemistry334, 127553.

Champagne E T, Bett K L, Vinyard B T, McClung A M, Barton F E, Moldenhauer K, Linscombe S, McKenzie K. 1999. Correlation between cooked rice texture and rapid visco analyser measurements. Cereal Chemistry76, 764–771.

Chen H, Chen D, He L, Wang T, Lu H, Yang F, Deng F, Chen Y, Tao Y, Li M, Li G, Ren W. 2021. Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chemistry349, 129176.

Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant6, 1769–1780.

Chen Z, Chen H, Jiang Y, Wang J, Khan A, Li P, Cao C. 2020. Metabolomic analysis reveals metabolites and pathways involved in grain quality traits of high-quality rice cultivars under a dry cultivation system. Food Chemistry326, 126845.

Custodio M C, Cuevas R P, Ynion J, Laborte A G, Velasco M L, Demont M. 2019. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? Trends in Food Science & Technology92, 122–137.

Fridez F. 2016. Basmati rice fraud under the magnifying glass of DNA analysis. Chimia70, 354–356.

FSA (Food Standard Agency). 2017. Final report: Application of multispectral imaging (MSI) to food and feed sampling and analysis. [2022-12-23].

Giraud G. 2013. The world market of fragrant rice, main issues and perspectives. International Food and Agribusiness Management Review16, 1–20.

Gonçalves B, Borges O, Costa H S, Bennett R, Santos M, Silva A P. 2010. Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fibre, organic acids and phenolics. Food Chemistry122, 154–160.

Gong R, Huang D, Chen Y, Li H, Wang Z, Zhou D, Zhao L, Pan Y, Chang Y, Xiang Y, Wang C, Zhou S. 2020. Comparative metabolomics analysis reveals the variations of eating quality among three high-quality rice cultivars. Molecular Breeding40, 112.

Gravois K A, Webb B D. 1997. Inheritance of long grain rice amylograph viscosity characteristics. Euphytica97, 25–29.

He H, Zhang Y, Hong Y, Gu Z. 2015. Effects of hydrocolloids on corn starch retrogradation. Starch-Stärke67, 348–354.

Heuberger A L, Lewis M R, Chen M-H, Brick M A, Leach J E, Ryan E P. 2010. Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. PLoS ONE5, e12915.

Huang X P, Lei L, Lei S X, Zhu W W, Yan J. 2021. Traceability of the geographical origin of Siraitia grosvenorii based on multielement contents coupled with chemometric techniques. Scientific Reports11, 21150.

Huo Y, Kamal G M, Wang J, Liu H, Zhang G, Hu Z, Anwar F, Du H. 2017. 1H NMR-based metabolomics for discrimination of rice from different geographical origins of China. Journal of Cereal Science76, 243–252.

Jingmen Municipal People’s Government. 2021. Jingshan rice. [2022-12-23]. (in Chinese)

Juliano B O, Antonio A A, Esmama B V. 1973. Effects of protein content on the distribution and properties of rice protein. Journal of the Science of Food and Agriculture24, 295–306.

Karabagias I K, Karabagias V K, Badeka A V. 2019. The honey volatile code: A collective study and extended version. Foods8, 508.

Kukusamude C, Kongsri S. 2018. Elemental and isotopic profiling of Thai jasmine rice (Khao Dawk Mali 105) for discrimination of geographical origins in Thung Kula Rong Hai area, Thailand. Food Control91, 357–364.

Lee J I, Kim D W, Jang G J, Song S, Park K J, Lim J H, Kim B M, Lee H J, Chen F, Ryu Y B, Kim H J. 2019. Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.). Food Science and Biotechnology28, 623–631.

Lin F, Rensing C, Pang Z, Zou J, Lin S, Letuma P, Zhang Z, Lin W. 2022. Metabolomic analysis reveals differential metabolites and pathways involved in grain chalkiness improvement under rice ratooning. Field Crops Research283, 108521.

Lu Z H, Sasaki T, Li Y Y, Yoshihashi T, Li L T, Kohyama K. 2009. Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel. Food Hydrocolloids23, 1712–1719.

Man J, Yang Y, Zhang C, Zhou X, Dong Y, Zhang F, Liu Q, Wei C. 2012. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. Journal of Agricultural and Food Chemistry60, 9332–9341.

Melvin M A. 1979. The effect of extractable lipid on the viscosity characteristics of corn and wheat starches. Journal of the Science of Food and Agriculture30, 731–738.

Ning H, Qiao J, Liu Z, Lin Z, Li G, Wang Q, Wang S, Ding Y. 2010. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. Journal of Cereal Science52, 90–95.

Rocchetti G, Bocchi S, Senizza B, Giuberti G, Trevisan M, Lucini L. 2022. Metabolomic insights into the phytochemical profile of cooked pigmented rice varieties following in vitro gastrointestinal digestion. Journal of Food Composition and Analysis106, 104293.

Schirmer M, Jekle M, Becker T. 2015. Starch gelatinization and its complexity for analysis. Starch-Stärke67, 30–41.

Seneviratne H D, Biliaderis C G. 1991. Action of α-amylases on amylose-lipid complex superstructures. Journal of Cereal Science13, 129–143.

Shi S, Wang E, Li C, Cai M, Cheng B, Cao C, Jiang Y. 2022. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Frontiers in Nutrition8, 758547.

Shi S, Wang E, Li C, Zhou H, Cai M, Cao C, Jiang Y. 2021. Comprehensive evaluation of 17 qualities of 84 types of rice based on principal component analysis. Foods10, 2883.

Sittipod S, Shi Y C. 2016. Changes of starch during parboiling of rice kernels. Journal of Cereal Science69, 238–244.

Uawisetwathana U, Karoonuthaisiri N. 2019. Metabolomics for rice quality and traceability: feasibility and future aspects. Current Opinion in Food Science28, 58–66.

Varavinit S, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O. 2003. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch-Stärke55, 410–415.

Vemireddy L R, Satyavathi V V, Siddiq E A, Nagaraju J. 2015. Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study. Journal of Food Science and Technology52, 3187–3202.

Virmani S S. 1996. Hybrid rice. In: Sparks D L, ed., Advances in Agronomy. Academic Press, the Netherlands. pp. 377–462.

De Vos R C H, Moco S, Lommen A, Keurentjes J J B, Bino R J, Hall R D. 2007. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols2, 778–791.

Wan J, Zhou G, Luo S, Wang R, Liu C, Zhang X, Liu F. 2017. A study of the effect of amino acids on pasting and short-term retrogradation properties of rice starch based on molecular dynamics simulation. Starch-Stärke69, 1600238.

Wangcharoen W, Phanchaisri C, Daengpok W, Phuttawong R, Hangsoongnern T, Phanchaisri B. 2016. Consumer acceptance test and some related properties of selected KDML 105 rice mutants. Journal of Food Science and Technology53, 3550–3556.

Xia J, Wishart D S. 2010. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics26, 2342–2344.

Ye J, Hu X, Luo S, McClements D J, Liang L, Liu C. 2018. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International106, 404–409.

Zhao Q, Xi J, Xu D, Jin Y, Wu F, Tong Q, Yin Y, Xu X. 2022a. A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected japonica rice varieties from different regions of China in raw and cooked form. Food Chemistry385, 132701.

Zhao Q, Xi J, Xu X, Yin Y, Xu D, Jin Y, Tong Q, Dong L, Wu F. 2022b. Volatile fingerprints and biomarkers of Chinese fragrant and non-fragrant japonica rice before and after cooking obtained by untargeted GC/MS-based metabolomics. Food Bioscience47, 101764.

[1] WANG Hao-quan, DAI Wei-min, ZHANG Zi-xu, LI Meng-shuo, MENG Ling-chao, ZHANG Zheng, LU Huan, SONG Xiao-ling, QIANG Sheng. Occurrence pattern and morphological polymorphism of weedy rice in China[J]. >Journal of Integrative Agriculture, 2023, 22(1): 149-169.
[2] REN Chuan-ying, LU Shu-wen, GUAN Li-jun, HONG Bin, ZHANG Ying-lei, HUANG Wen-gong, LI Bo, LIU Wei, LU Wei-hong.

The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2767-2776.

[3] ZHANG Gui-quan . Prospects of utilization of inter-subspecific heterosis between indica and japonica rice[J]. >Journal of Integrative Agriculture, 2020, 19(1): 1-10.
[4] RAO Gang-shun, Umair Ashraf, KONG Lei-lei, MO Zhao-wen, XIAO Li-zhong, ZHONG Ke-you, Fahd Rasul, TANG Xiang-ru.
Low soil temperature and drought stress conditions at flowering stage affect physiology and pollen traits of rice
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1859-1870.
[5] JI Zhi-juan, Yang Shu-dong, ZENG Yu-xiang, LIANG Yan, YANG Chang-deng, QIAN Qian. Pyramiding blast, bacterial blight and brown planthopper resistance genes in rice restorer lines[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1432-1440.
No Suggested Reading articles found!