Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1291-1307    DOI: 10.1016/j.jia.2022.08.039
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance

LI Jiao-jiao*, ZHAO Li*, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang#, CHEN Xin-hong# 

Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  黑麦(Secale cereale L., 2n=2x=14, RR)因具有多种病害抗性和非生物胁迫耐性受性强的特点而被认为是普通小麦改良的重要遗传资源。源自德国栽培黑麦品种Petkus的1RS染色体在小麦的育种进程中起着举足轻重的作用,但由于其所具有的抗病性逐渐变弱,因此亟需发掘新的抗性资源。本研究从普通小麦和墨西哥黑麦的杂交后代中选育了一个新型衍生后代,命名为D27。细胞学观察显示D27的核型组成为2n=42=21II。基因组原位杂交(GISH)结果表明D27中含有一对整臂易位的墨西哥黑麦染色体,该外源染色体在有丝分裂和减数分裂过程中均能稳定遗传。荧光原位杂交(FISH)和醇溶蛋白电泳分析都表明衍生系D27的小麦1DS染色体发生了丢失,取而代之的是墨西哥黑麦的1RS染色体。这一结果同样得到了小麦简单序列重复(SSR)标记、黑麦特异序列扩增区段(SCAR)标记和小麦40K SNP芯片的验证支持,即:通过分子标记和芯片检测,D27中不含有小麦1DS染色体,但是存在黑麦1RS染色体。农艺性状鉴定表明与小麦亲本相比D27的分蘖数增多,条锈病和白粉病抗性增强。面团特性分析表明,1DS染色体被1RS染色体替换后,衍生系D27的面团粘性增加,弹性变低,有利于蛋糕的制作。综上所述,细胞遗传学稳定的小麦-墨西哥黑麦T1DL·1RS易位系可作为小麦抗病和增产育种的优异新种质,同时可用于黑麦1RS染色体遗传多样性的研究。

Abstract  

Rye (Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits.  The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding.  However, its weakened disease resistance highlights the need to identify new resources.  In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.  Cytological observations characterized the karyotype of D27 as 2n=42=21 II.  Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27.  Experiments using fluorescence in situ hybridization (FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes.  They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.  The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed.  Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance.  In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making.  In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement.  Additionally, it can be valuable for researching the rye 1RS chromosome’s genetic diversity. 

Keywords:  common wheat        disease resistance       dough properties       Rye              translocation line  
Received: 10 February 2022   Accepted: 22 April 2022
Fund: 

This study was supported by the National Natural Science Foundation of China (31771785) and the Key Research and Development Program of Shaanxi, China (2018ZDXM-NY-006).

About author:  #Correspondence LI Jia-chuang, E-mail: lijiachuang0208@126.com; CHEN Xin-hong, E-mail: cxh2089@126.com * These authors contributed equally to this study.

Cite this article: 

LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. 2023. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. Journal of Integrative Agriculture, 22(5): 1291-1307.

Akram Z, Ajmal S U, Khan K S, Qureshi R, Zubair M. 2011. Combining ability estimates of some yield and quality related traits in spring wheat (Triticum aestivum L.). Pakistan Journal of Botany, 43, 221–231.
An D G, Ma P T, Zheng Q, Fu S L, Li L H, Han F P, Han G H, Wang J, Xu Y F, Jin Y L, Luo Q L, Zhang X T. 2019. Development and molecular cytogenetic identification of a new wheat–rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theoretical and Applied Genetics, 132, 257–272.
Anamthawat-Jónsson K, Heslop-Harrison J S. 1993. Isolation and characterization of genome-specific DNA sequences in Triticeae species. Molecular and General Genetics, 240, 151–158.
Bai S S, Zhang H B, Han J, Wu J H, Li J C, Geng X X, Lü B Y, Xie S F, Han D J, Zhao J X, Yang Q H, Wu J, Chen X H. 2021. Identification of genetic locus with resistance to take-all in the wheat–Psathyrostachys huashanica Keng introgression line H148. Journal of Integrative Agriculture, 20, 3101–3113.
Bielig L M, Driscoll C J. 1970. Substitution of rye chromosome 5R for chromosome 5B of wheat and its effect on chromosome pairing. Genetics, 65, 241–247.
Camacho J P M, Sharbel T F, Beukeboom L W. 2000. B-chromosome evolution. Philosophical Transactions of the Royal Society of London (B: Biological Sciences), 355, 163–178.
Chai J F, Zhou R H, Jia J Z, Liu X. 2006. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat–rye chromosome translocations. Plant Breeding, 125, 302–304.
Chen P D, Qi L, Zhou B, Zhang S, Liu D J. 1995. Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 91, 1125–1128.
Cheng X P, Jing R L, Li Y Y, Liu X L, Mao X G, Miao L L, Wang J Y, Zhang H J, Zhang H J. 2021. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat. Journal of Integrative Agriculture, 20, 46–54.
Cifuentes M, Benavente E. 2009. Wheat–alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theoretical and Applied Genetics, 119, 805–813.
Consortium I W G S C. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Crosbie G B. 1991. The relationship between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours. Journal of Cereal Science, 13, 145–150.
Dhaliwal A S, Mares D J, Marshall D R. 1987. Effect of 1B/1R chromosome translocation on milling and quality characteristics of bread wheats. Cereal Chemistry, 64, 72–76.
Efremova T T, Chumanova E V, Zhukova I M. 2021. Winter hardiness analysis of wheat–rye 5R(5A) substituted lines in Western Siberia. Cereal Research Communications, 50, 25–35.
Faris J D, Xu S S, Cai X, Friesen T L, Jin Y. 2008. Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Research, 16, 1097–1105.
Fu S L, Chen L, Wang Y Y, Li M, Yang Z J, Qiu L, Yan B J, Ren Z L, Tang Z X. 2015. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Scientific Reports, 5, 10552.
Fu S L, Ren Z L, Chen X M, Yan B J, Tan F Q, Fu T H, Tang Z X. 2014. New wheat–rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. Journal of Plant Research, 127, 743–753.
Gao L C, Bai W M, Xia M J, Wan C X, Wang M, Wang P K, Gao X L, Gao J F. 2021. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. International Journal of Biological Macromolecules, 179, 542–549.
Graybosch R A, Peterson C J, Hansen L E, Mattern P J. 1990. Relationships between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germplasm. Cereal Chemistry, 67, 342–349.
Griffiths M, Atkinson J A, Gardiner L J, Swarup R, Pound M P, Wilson M H, Bennett M J, Wells D M. 2022. Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21, 917–932.
Guo L, Yu L, Tong J, Zhao Y, Yang Y, Ma Y, Cui L, Hu Y, Wang Z, Gao X. 2021. Addition of Aegilops geniculata 1Ug chromosome improves the dough rheological properties by changing the composition and micro-structure of gluten. Food Chemistry, 358, 129850.
Gupta R B, Paul J G, Cornish G B, Palmer G A, Bekes F, Rathjen A J. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. I. Its additive and interaction effects on dough properties. Journal of Cereal Science, 19, 9–17.
Hao C, Dong Y, Wang L, You G, Zhang H, Ge H, Jia J, Zhang X. 2008. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chinese Science Bulletin, 53, 1518–1526.
Huebner F R, Bietz J A, Nelsen T, Bains G S, Finney P L. 1999. Soft wheat quality as related to protein composition. Cereal Chemistry, 76, 650–655.
Jones R N, Viegas W, Houben A. 2008. A century of B chromosomes in plants: So what? Annals of Botany, 101, 767–775.
Kamaluddin, Khan M A, Kiran U, Ali A, Abdin M Z, Zargar M Y, Ahmad S, Sofi P A, Gulzar S. 2017. Molecular markers and marker-assisted selection in crop plants. In: Abdin M Z, Kiran U, Ali K A, eds., Plant Biotechnology: Principles and Applications. Springer Singapore, Singapore. pp. 295–328.
Kim Y R, Cornillon P, Campanella O H, Stroshine R L, Lee S, Shim J Y. 2008. Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting. Journal of Food Science, 73, E1–E8.
Koebner R M D, Appels R, Shepherd K W. 1986. Rye heterochromatin. II. Characterization of a derivative from chromosome 1DS·1RL with a reduced amount of the major repeating sequence. Genome, 28, 658–664.
Kozub N A, Sozinov I A, Karelov A V, Blume Y B, Sozinov A A. 2017. Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes. Cytology and Genetics, 51, 117–129.
Krasilova N M, Adonina I G, Silkova O G, Shumny V K. 2012. Transmission of the rye 2R chromosome in backcrosses of wheat–rye 2R(2D) substitution lines to common wheat varieties. Russian Journal of Genetics (Applied Research), 2, 65–71.
Kumar S, Singroha G, Bhardwaj S C, Bala R, Saharan M S, Gupta V, Khan A, Mahapatra S, Sivasamy M, Rana V, Mishra C N, Prakash O, Verma A, Sharma P, Sharma I, Chatrath R, Singh G P. 2019. Multienvironmental evaluation of wheat (Triticum aestivum L.) germplasm identifies donors with multiple fungal disease resistance. Genetic Resources and Crop Evolution, 66, 797–808.
Lee Y H, Larter E N, Evans L E. 1970. Meiotic behavior of wheat–rye addition and substitution lines. Crop Science, 10, 144–145. 
Lei M P, Li G R, Zhou L, Li C H, Liu C, Yang Z J. 2013. Identification of wheat–Secale africanum chromosome 2Rafr introgression lines with novel disease resistance and agronomic characteristics. Euphytica, 194, 197–205.
Li G R, Tang L R, Yin Y, Zhang A H, Yu Z H, Yang E N, Tang Z X, Fu S L, Yang Z J. 2020. Molecular dissection of Secale africanum chromosome 6Rafr in wheat enabled localization of genes for resistance to powdery mildew and stripe rust. BMC Plant Biology, 20, 134.
Li J, Zhu X G, Wan H S, Wang Q,Tang Z X, Fu S L,Yang Z J, Yang M Y, Yang W Y. 2015. Identification of the 1RS-7DS·7DL wheat–rye small segment translocation lines. Hereditas, 37, 590–598.
Li J C, Li J J, Cheng X N, Zhao L, Yang Z J, Wu J, Yang Q H, Chen X H, Zhao J X. 2021. Molecular cytogenetic and agronomic characterization of the similarities and differences between wheat–Leymus mollis Trin. and wheat–Psathyrostachys huashanica Keng 3Ns (3D) substitution lines. Frontiers in Plant Science, 12, 644896.
Li J C, Yao X N, Yang Z J, Cheng X N, Yuan F P, Liu Y, Wu J, Yang Q H, Zhao J X, Chen X H. 2019. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng 5Ns (5D) disomic substitution line with stripe rust resistance. Molecular Breeding, 39, 109.
Li J C, Zhao L, Cheng X N, Bai G H, Li M, Wu J, Yang Q H, Chen X H, Yang Z J, Zhao J X. 2020. Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line with powdery mildew resistance. BMC Plant Biology, 20, 163.
Li J L, Wang X P, Zhong L, Xu X L. 2006. Study on homoeologous chromosome pairing and translocation induced by 5A/5R× 6A/6R wheat–rye substitution lines. Acta Genetica Sinica, 33, 244–250. (in Chinese)
Li Z, Ren Z, Tan F, Tang Z, Ren T. 2016. Molecular cytogenetic characterization of new wheat–rye 1R(1B) substitution and translocation lines from a Chinese Secale cereal L. aigan with resistance to stripe rust. PLoS ONE, 11, e0163642.
Li Z S. 2010. Retrospect and prospect of wheat breeding in China. Journal of Agricultural Science and Technology, 12, 1–4.
Liu D C, Zhang H G, Zhang L Q, Yuan Z W, Hao M, Zheng Y L. 2014. Distant hybridization: A tool for interspecific manipulation of chromosomes. In: Pratap A J, Kumar J, eds., Alien Gene Transfer in Crop Plants. vol. 1. Innovations. Methods and Risk Assessment. Springer, New York. pp. 25–42.
Lopes-da-Silva J A, Santos D M J, Freitas A, Brites C, Gil A M. 2007. Rheological and nuclear magnetic resonance (NMR) study of the hydration and heating of undeveloped wheat doughs. Journal of Agricultural and Food Chemistry, 55, 5636–5644.
Lukaszewski A J. 2000. Manipulation of the 1RS·1BL translocation in wheat by induced homoeologous recombination. Crop Science, 40, 216–225.
Mccreery T, Helentjaris T. 1994. Hybridization of digoxigenin-labeled probes to Southern blots and detection by chemiluminescence. Methods in Molecular Biology, 28, 107–112.
McIntosh R A, Friebe B, Jiang J, The D, Gill B S. 1995. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat–rye translocation line. Euphytica, 82, 141–147.
Merker A. 1975. Chromosome composition of hexaploid Triticale. Hereditas, 80, 41–52.
Qi W L, Tang Y, Zhu W, Li D Y, Diao C D, Xu L L, Zeng J, Wang Y, Fan X, Sha L N, Zhang H Q, Zheng Y L, Zhou Y H, Kang H Y. 2016. Molecular cytogenetic characterization of a new wheat–rye 1BL·1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta, 244, 405–416.
Rabinovich S V. 1998. Importance of wheat–rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica, 100, 323–340.
Rasheed A, Mujeeb-Kazi A, Ogbonnaya F C, He Z, Rajaram S. 2018. Wheat genetic resources in the post-genomics era: promise and challenges. Annals of Botany, 121, 603–616.
Ren T H, Chen F, Yan B J, Zhang H Q, Ren Z L. 2012. Genetic diversity of wheat–rye 1BL·1RS translocation lines derived from different wheat and rye sources. Euphytica, 183, 133–146.
Ren T H, Sun Z X, Ren Z L, Tan F Q, Luo P G, Tang Z X, Fu S L, Li Z. 2020. Molecular and cytogenetic characterization of a wheat–rye 7BS·7RL translocation line with resistance to stripe rust, powdery mildew, and fusarium head blight. Phytopathology, 110, 10.
Ren Z L, Lelley T. 1991. Translocations of chromosomes in octoploid Triticale×common wheat hybrids. Journal of Genetics & Genomics, 18, 228–234.
Röder M, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal M. 1998. A microsatellite map of wheat. Genetics, 149, 2007–2023. 
Sarabhai S, Sudha M L, Prabhasankar P. 2017. Rheological characterization and biscuit making potential of gluten free flours. Journal of Food Measurement and Characterization, 11, 1449–1461.
Schlegel R, Korzun V. 1997. About the origin of 1RS·1BL wheat–rye chromosome translocations from Germany. Plant Breeding, 116, 537–540.
Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. 2016. Production and cytomolecular identification of new wheat–perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theoretical and Applied Genetics, 129, 1045–1059. 
Sheng B Q. 1988. Grades of resistance to powdery mildew classified by different phenotypes of response in the seeding stage of wheat. Plant Protection, 1, 49.
Shimizu Y, Nasuda S, Endo T. 1997. Detection of the Sec-1 locus of rye by a PCR-based method. Genes & Genetic Systems, 72, 197–203.
Sidhu G, Rustgi S, Shafqat M, Wettstein D, Gill K. 2008. Fine structure mapping of a gene-rich region of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes. Proceedings of the National Academy of the Sciences of the United States of America, 105, 5815–5820.
Singh S, Singh N. 2013. Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocolloids, 33, 342–348.
Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.
Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. 2020. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 18, 1354–1360.
Szakács É, Molnár-Láng M. 2010. Identification of new winter wheat–winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole ‘Martonvásári 9 kr1’-‘Igri’ addition set. Genome, 53, 35–44.
Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T, Zhu W, Zhang J, Fu S. 2018. Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Frontiers in Plant Science, 9, 1104.
Tang Z X, Yang Z J, Fu S L. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 55, 313–318.
Wang C M, Zheng Q, Li L H, Niu Y C, Wang H B, Li B, Zhang X T, Xu Y F, An D G. 2009. Molecular cytogenetic characterization of a new T2BL·1RS wheat–rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Disease, 93, 124–129.
Wang H W, Sun S L, Ge W Y, Zhao L F, Kong L R. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 368, eaba5435.
Wang S W, Wang C Y, Wang Y Z, Wang Y J, Chen C H, Ji W Q. 2019. Molecular cytogenetic identification of two wheat–Thinopyrum ponticum substitution lines conferring stripe rust resistance. Molecular Breeding, 39, 143.
Wang Y Z, Cao Q, Zhang J J, Wang S W, Chen C H, Wang C Y, Zhang H, Wang Y J, Ji W Q. 2020. Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Frontiers in Plant Science, 11, 1282.
Weimarck A. 1973. Cytogenetic behaviour in octoploid Triticale. Hereditas, 74, 103–118.
Wetzel J B, Rayburn A L. 2000. Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content. Cytometry, 41, 36–40.
Yang W J, Wang C Y, Chen C H, Wang Y J, Zhang H, Liu X L, Ji W Q. 2016. Molecular cytogenetic identification of a wheat–rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome, 59, 277–288.  
Yang Z J, Li G R, Jia J Q, Zeng X, Lei M P, Zeng Z X, Zhang T, Ren Z L. 2009. Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica, 167, 197–202.
Zahoor I, Hasan H, Gul A, Khursheed A, Ali M, Amir R, Afzal F, Kubra G, Basharat A, Aziz F, Zarrar F. 2020. Chapter 8 - Molecular mechanism of drought tolerance in wheat. In: Ozturk M, Gul A, eds., Climate Change and Food Security with Emphasis on Wheat. Academic Press, Elsevier United Kingdom. pp. 129–154.
Zhang S J, Yuan Z W, Huang L, Li Y Z, Xie D, Chen X J, Hao M, Li Q C, Zhao L B, Ning S Z, Fan C L, Zhan L Q. 2020. Genetic stability of wheat–rye 6RS/6AL translocation chromosome and its transmission through gametes. Acta Agronomica Sinica, 46, 513–519. (in Chinese)
Zhang Y, He Z. 2002. Investigation on paste property of spring-sown Chinese wheat. Scientia Agricultura Sinica, 35, 471–475. (in Chinese)
Zhao J X, Ji W Q, Wu J, Chen X H, Cheng X N, Wang J W, Pang Y H, Liu S H, Yang Q H. 2010. Development and identification of a wheat–Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genetic Resources and Crop Evolution, 57, 387–394.
Zhao L B, Die X, Lei H, Zhang S J, LUO J T, Bo J, Ning S Z, Zhang L Q, Yuan Z W, Wang J R, Zheng Y L, Liu D C, Ming H. 2021. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements. Journal of Integrative Agriculture, 20, 2333–2342.

[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[3] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[4] JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2591-2601.
[5] ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2483-2499.
[6] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[7] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[8] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[9] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[10] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[11] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[12] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[13] SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing. The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2470-2482.
[14] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[15] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
No Suggested Reading articles found!