Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 120-138    DOI: 10.1016/j.jia.2022.08.040
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears
SHAN Yan-fei1*, LI Meng-yan1*, WANG Run-ze1, LI Xiao-gang2, LIN Jing2, LI Jia-ming1, ZHAO Ke-jiao1, WU Jun1

1 College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R.China

2 Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210095, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  梨早期落叶现象通常发生在夏季,已逐渐成为威胁我国南方梨产业发展的重要问题。然而,不同梨品种资源的早期落叶性状缺乏系统的评价,且调控梨早期落叶性状的基因及其潜在的分子机制尚未明确。本研究通过对155份梨种质资源的田间调查,评价其对早期落叶的抗病或感病表现。结果表明,126份梨种质资源表现出对早期落叶的感病性,其余29份梨种质资源表现出对早期落叶的抗病性,其中19份抗性种质资源属于砂梨。为鉴定与梨早期落叶相关的抗性基因,分别采集了抗病品种‘华山’与感病品种‘翠冠’的健康叶片及感病叶片,进行RNA测序和基因表达差异比较。分析结果表明,与感病品种‘翠冠’相比,有444个基因仅在抗病品种‘华山’的健康叶片与感病叶片中差异表达;GO功能富集与KEGG代谢途径富集分析结果表明,梨早期落叶与胁迫响应密切相关。进一步的基因共表达网络分析发现,WRKY、ERF转录因子与梨早期落叶抗性高度相关。本研究不仅筛选出了梨早期落叶抗性资源,也鉴定了梨早期落叶抗性响应的重要候选基因,相关结果为促进梨抗病分子机制解析及抗性品种的分子育种奠定了基础。

Abstract  

Early defoliation, which usually occurs during summer in pear trees, is gradually becoming a major problem that poses a serious threat to the pear industry in southern China.  However, there is no system for evaluating the responses of different cultivars to early defoliation, and our knowledge of the potential molecular regulation of the genes underlying this phenomenon is still limited.  In this study, we conducted field investigations of 155 pear accessions to assess their resistance or susceptibility to early defoliation.  A total of 126 accessions were found to be susceptible to early defoliation, and only 29 accessions were resistant.  Among them, 19 resistant accessions belong to the sand pear species (Pyrus pyrifolia).  To identify the resistance genes related to early defoliation, the healthy and diseased samples of two sand pear accessions, namely, the resistant early defoliation accession ‘Whasan’ and the susceptible early defoliation accession ‘Cuiguan’, were used to perform RNA sequencing.  Compared with ‘Cuiguan’, a total of 444 genes were uniquely differentially expressed in ‘Whasan’.  Combined with GO and KEGG enrichment analyses, we found that early defoliation was closely related to the stress response.  Furthermore, a weighted gene co-expression network analysis revealed a high correlation of WRKY and ethylene responsive factor (ERF) transcription factors with early defoliation resistance.  This study provides useful resistant germplasm resources and new insights into potentially essential genes that respond to early defoliation in pears, which may facilitate a better understanding of the resistance mechanism and molecular breeding of resistant pear cultivars

Keywords:  pear       early defoliation       resistance and susceptibility evaluation       RNA-seq       WRKY       ERF  
Received: 24 March 2021   Accepted: 21 April 2022
Fund: 

This work was supported by the earmarked fund for Jiangsu Agricultural Industry Technology System, China (JATS [2021]453), the National Key Research and Development Program of China (2021YFD1200200), and the earmarked fund for China Agriculture Research System (CARS-28).  We thank the State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, and the Bioinformatics Center of Nanjing Agricultural University, China for supporting this project.

About author:  SHAN Yan-fei, E-mail: 2019804214@njau.edu.cn; LI Meng-yan, E-mail: 2019104036@njau.edu.cn; Correspondence WU Jun, E-mail: wujun@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. 2023. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears. Journal of Integrative Agriculture, 22(1): 120-138.

Ali M A, Azeem F, Nawaz M A, Acet T, Abbas A, Imran Q M, Shah K H, Rehman H M, Chung G, Yang S H, Bohlmann H. 2018. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 226, 12–21.
Andolfo G, Ercolano M R. 2015. Plant innate immunity multicomponent model. Frontiers in Plant Science, 6, 987.
Baudry A J P M, Larue P. 1993. First report of Japanese pear black spot caused by Alternaria kikutiana in France. Plant Disease, 77, 428.
Bell R L, van der Zwet T. 2005. Host resistance in Pyrus to Fabraea leaf spot. Hortscience, 40, 21–23.
van den Berg F, Robert C, Shaw M W, van den Bosch F. 2007. Apical leaf necrosis and leaf nitrogen dynamics in diseased leaves: A model study. Plant Pathology, 56, 424–436.
Bogo A, Goncalves M J, Sanhueza R M V, Rufato L, Casa R T, de Bem B P, da Silva F N. 2018. Relationship among Entomosporium severity, defoliation, and vegetative-reproductive variables in pear in Brazil. Pesquisa Agropecuaria Brasileira, 53, 892–899.
Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.
Bouvier L, Bourcy M, Boulay M, Tellier M, Guerif P, Denance C, Durel C E, Lespinasse Y. 2012. A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genetics & Genomes, 8, 53–60.
Bues R, Toubon J F, Boudinhon L. 2000. Genetic analysis of resistance to azinphosmethyl in the pear psylla Cacopsylla pyri. Entomologia Experimentalis et Applicata, 96, 159–166.
Calle Garcia J, Guadagno A, Paytuvi-Gallart A, Saera-Vila A, Amoroso C G, D’Esposito D, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano M R. 2021. PRGdb 4.0: An updated database dedicated to genes involved in plant disease resistance process. Nucleic Acids Research, 50, D1483–D1490.
Chakraborty J, Sen S, Ghosh P, Jain A, Das S. 2020. Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition. BMC Plant Biology, 20, 319.
Challiol M A, Mio M D, Larissa L, Cuquel F L, Monteiro L B, Serrat B M, Motta A, Ribeiro Júnior P J. 2006. Shot hole diagrammatic scale development and leaf diseases assessment in two production systems of peach. Revista Brasileira de Fruticultura, 28, 391–396. (in Portuguese)
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Chen J Y. 2008. Introduction experiment and cultivation technique of Atago pear in Xuchang, Henan. Northern Horticulture, (04), 140–141. (in Chinese)
Cheol C K, Yun B K, Choi H S, Han J J. 2015. Growth of ‘Wonhwang’ pear trees and regrowth rates of stem cuttings in vitro as affected by time and degree of defoliation. Korea Journal of Organic Agriculture, 23, 267–280.
Cheong Y H, Chang H S, Gupta R, Wang X, Zhu T, Luan S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129, 661–677.
Cheval C, Aldon D, Galaud J P, Ranty B. 2013. Calcium/calmodulin-mediated regulation of plant immunity. Biochimica et Biophysica Acta - Molecular Cell Research, 1833, 1766–1771.
Chiasson D, Ekengren S K, Martin G B, Dobney S L, Snedden W A. 2005. Calmodulin-like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. tomato. Plant Molecular Biology, 58, 887–897.
Cruz-Castillo J G, Woolley D J, Famiani F. 2010. Effects of defoliation on fruit growth, carbohydrate reserves and subsequent flowering of ‘Hayward’ kiwifruit vines. Scientia Horticulturae, 125, 579–583.
Deng G T, Liu Y, Wei R Z, Liu J, Fan L Z, Zhang M. 2008. Resistance of pear varieties to pear black spot. Northern Horticulture, (03), 6–8. (in Chinese)
Di C X, Zhang M X, Xu S J, Cheng T, An L Z. 2006. Role of polygalacturonase-inhibiting protein in plant defense. Critical Reviews in Microbiology, 32, 91–100.
Diener A C, Ausubel F M. 2005. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics, 171, 305–321.
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21.
Dong H Z, Chen Q M, Dai Y Q, Hu W J, Zhang S L, Huang X S. 2021. Genome-wide identification of PbrbHLH family genes, and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri). BMC Plant Biology, 21, 86.
Erler F. 2004. Oviposition deterrency and deterrent stability of some oily substances against the pear psylla Cacopsylla pyri. Phytoparasitica, 32, 479–485.
Faize M, Faize L, Koike N, Ishizaka M, Ishii H. 2004. Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology, 94, 604–612.
FAO (Food and Agriculture Organization). 2020. Online statistical database: Pear production. [2022-02-17]. http://faostat.fao.org/
Fukaya M. 2004. First report of Japanese pear anthracnose disease caused by Colletotrichum acutatum and its chemical control. Japanese Journal of Phytopathology, 70, 184–189.
Gao Y H, Yang Q S, Yan X H, Wu X Y, Yang F, Li J Z, Wei J, Ni J B, Ahmad M, Bai S L, Teng Y W. 2021. High-quality genome assembly of ‘Cuiguan’ pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research, 8, 197.
Gao Y R, Sun J C, Sun Z L, Xing Y, Zhang Q, Fang K F, Cao Q Q, Qin L. 2020. The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume). Journal of Integrative Agriculture, 19, 1033–1043.
Goncalves M J, Bogo A, Rufato L, de Jesus W C, Casa R T, Weber G C, Correa D. 2013. Behavior of European pear cultivars under different quince rootstocks to ‘Entomosporium’ leaf spot in southern Brazil. Crop Protection, 49, 26–30.
Gong X, Zhao L Y, Song X F, Lin Z K, Gu B J, Yan J X, Zhang S L, Tao S T, Huang X S. 2019. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biology, 19, 161.
Gortari F, Alonso S M, Guiamet J J, Graciano C. 2021. Interaction effects of water supply and artificial defoliation in autumn on growth, biomass and nutrient accumulation in Populus deltoides. New Forests, 52, 1037–1054.
Gortari F, Guiamet J J, Cortizo S C, Graciano C. 2018. Poplar leaf rust reduces dry mass accumulation and internal nitrogen recycling more markedly under low soil nitrogen availability, and decreases growth in the following spring. Tree Physiology, 39, 19–30.
Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C M, He X H, Han Y, Martin G B. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell, 14, 817–831.
Hsu F C, Chou M Y, Chou S J, Li Y R, Peng H P, Shih M C. 2013. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. The Plant Cell, 25, 2699–2713.
Huang X S, Li K Q, Xu X Y, Yao Z H, Jin C, Zhang S L. 2015. Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress. BMC Genomics, 16, 1104.
Huang X Z, Chen Y T, Lei Y, Cai S H, Chen X M. 2010. Causes and control strategies of a large number of early falling leaves of pear in Fujian. Chinese Agricultural Science Bulletin, 26, 91–95. (in Chinese)
Huang X Z, Zeng S M, Zhang C H, Hu N S, Chen X M. 2018. Control effects of rain-shelter cultivation on early defoliation and reflorescence of pear trees. Acta Agriculturae Jiangxi, 30, 19–22. (in Chinese)
Hudina M, Stampar F. 1999. Influence of water stress and assimilation area on the sugar content and organic acid during the growth period in the pear fruits (Pyrus communis L.) cv. ‘Williams’. Phyton-Annales Rei Botanicae, 39, 107–111.
Hughes A M, Hallmark H T, Plackova L, Novak O, Rashotte A M. 2021. Clade III cytokinin response factors share common roles in response to oxidative stress responses linked to cytokinin synthesis. Journal of Experimental Botany, 72, 3294–3306.
Hussain A, Li X, Weng Y H, Liu Z Q, Ashraf M F, Noman A, Yang S, Ifnan M, Qiu S S, Yang Y J, Guan D Y, He S L. 2018. CaWRKY22 acts as a positive regulator in pepper response to Ralstonia solanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. International Journal of Molecular Sciences, 19, 1426.
Jamar L, Song J, Fauche F, Choi J, Lateur M. 2017. Effectiveness of lime sulphur and other inorganic fungicides against pear scab as affected by rainfall and timing application. Journal of Plant Diseases and Protection, 124, 383–391.
Jeon J, Cho C, Lee M R, Van Binh N, Kim J. 2016. Cytokinin response factor2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. The Plant Cell, 28, 1828–1843.
Kahlon P S, Stam R. 2021. Polymorphisms in plants to restrict losses to pathogens: From gene family expansions to complex network evolution. Current Opinion in Plant Biology, 62, 102040.
Kalisz S, Oszmianski J, Wojdylo A. 2015. Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen. Physiological and Molecular Plant Pathology, 91, 113–119.
Kang Y L, Yang H, Zeng S M, Jiang S T, Xie C Y, Wang Z H, Dong C X, Xu Y C, Shen Q R. 2021. Mitigation of soil acidification in orchards: A case study to alleviate early defoliation in pear (Pyrus pyrifolia) trees. Rhizosphere, 20, 100445.
Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.
Kruijt M, De Kock M J D, De Wit P J G M. 2005. Receptor-like proteins involved in plant disease resistance - review. Molecular Plant Pathology, 6, 85–97.
Kudla J, Batistic O, Hashimoto K. 2010. Calcium signals: The lead currency of plant information processing. The Plant Cell, 22, 541–563.
Kwack Y B, Kim H L, Chae W B, Kim S H, Lee Y B, Kim J G. 2014. Carbohydrate reserves of non-fruiting young kiwifruit vines as affected by early artificial defoliation. Horticulture Environment and Biotechnology, 55, 462–470.
Lee H, Cha J, Choi C, Choi N, Ji H S, Park S R, Lee S, Hwang D J. 2018. Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice, 11, 5.
Li C N, Ng C K Y, Fan L M. 2015. MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany, 114, 80–91.
Li J Y, Tian B L. 2020. Peppermint essential oil toxicity to the pear psylla (Hemiptera: Psyllidae) and potential applications in the field. Journal of Economic Entomology, 113, 1307–1314.
Li X G, Yang Q S, Wang Z H, Lin J, Li H, Wang H, Chang Y H. 2017. The research on assessment of resistance to early defoliation in pears. Shanghai Agricultural Science and Technology, 1, 50–51. (in Chinese)
Li X L, Tao S, Wei S W, Ming M L, Huang X S, Zhang S L, Wu J. 2018. The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biology, 18, 46.
Li X Y, Li R H, Wang C, Yu Q B, Chen S, Jiang J, Liu G F. 2020. Inhibition of BpEIN3 causes plaques in leaves of Betula platyphylla×B. pendula. Trees-Structure and Function, 34, 483–495.
Liao Y, Smyth G K, Shi W. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.
Lin Y X, Zhang Y P, Zhao W, Dong Y X, Fei X H, Song Q G, Sha L Q, Wang S S, Grace J. 2018. Pattern and driving factor of intense defoliation of rubber plantations in SW China. Ecological Indicators, 94, 104–116.
Liu D, Yang L, Zhang J Z, Zhu G T, LÜ H J, LÜ Y Q, Wang Y L, Cao X, Sun T S, Huang S W, Wu Y Y. 2020. Domestication and breeding changed tomato fruit transcriptome. Journal of Integrative Agriculture, 19, 120–132.
Liu X M, Gao T T, Zhang Z J, Tan K X, Jin Y B, Zhao Y M, Ma F W, Li C. 2020. The mitigation effects of exogenous dopamine on low nitrogen stress in Malus hupehensis. Journal of Integrative Agriculture, 19, 2709–2724.
Liu Y L, Wang T, Teng Y W. 2011. Influence of pathogen infection on early abscission of three Chinese pear cultivars (Pyrus pyrifolia Nakai). South China Fruits, 41, 14–16. (in Chinese)
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.
Matsumoto K, Tamura F, Chun J P, Zhang C X, Tanabe K. 2008. Influences of NaCl on the growth, photosynthesis, ion and water relations in rootstocks of Japanese pear. In: Palmer J W, ed., Proceedings of the International Symposium on Enhancing Economic and Environmental Sustainability of Fruit Production in a Global Economy. Acta Horticulturae, Seoul, South Korea. pp. 231.
Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj K S V, Burd S, Ophir R, Kochanek B, Reid M S, Jiang C Z, Lers A. 2010. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiology, 154, 1929–1956.
Meraj T A, Fu J Y, Raza M A, Zhu C Y, Shen Q Q, Xu D B, Wang Q. 2020. Transcriptional factors regulate plant stress responses through mediating secondary metabolism. Genes, 11, 346.
Mertoglu K, Evrenosoglu Y, Ozsoy A. 2020. Susceptibility, heterosis and heterobeltiosis evaluations for fire blight resistance in pear. Genetika-Belgrade, 52, 537–545.
Mortazavi A, Williams B A, Mccue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628.
Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones J D. 2004. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiology, 135, 1113–1128.
Niu J Z, Huo L Q. 2015. The occurrence regularity and control countermeasures of apple early defoliation in Xingtai. Primary Agricultural Technology Extension, 5, 74–75. (in Chinese)
Oh S, Han H, Kim D. 2021. A novel pear scab (Venturia nashicola) resistance gene, Rvn3, from interspecific hybrid pear (Pyrus pyrifolia×P. communis). Plants (Basel, Switzerland), 10, 2632.
Pehlevan B, Kovanci O B. 2018. Laboratory assay of toxicity and oviposition deterrence of selected vegetable seed oils against Cacopsylla pyricola (Homoptera: Psyllidae). Journal of Entomological Science, 53, 192–204.
Pellizzari G, Duso C, Rainato A, Pozzebon A, Zanini G. 2012. Phenology, ethology and distribution of Pseudococcus comstocki, an invasive pest in northeastern Italy. Bulletin of Insectology, 65, 209–215.
Reighard G L, Quellette D R, Brock K H. 2005. Field performance of fire blight tolerant, Pyrus communis selections in South Carolina. In: International Society for Horticultural Science (ISHS), Leuven, Belgium. pp. 213–218.
Ren J C, Hu J L, Zhang A L, Ren S P, Jing T T, Wang X S, Sun M, Huang L K, Zeng B. 2021. The whole-genome and expression profile analysis of WRKY and RGAs in Dactylis glomerata showed that DG6C02319.1 and DgWRKYs may cooperate in the immunity against rust. PeerJ, 9, e11919.
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.
Shi H Y, Cao L W, Xu Y, Yang X, Liu S L, Liang Z S, Li G C, Yang Y P, Zhang Y X, Chen L. 2021. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai). Journal of Integrative Agriculture, 20, 2424–2437.
Shi X L, Gupta S, Rashotte A M. 2014. Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. Plant Cell Reports, 33, 35–45.
Song G C. 2002. Internal bark necrosis in ‘Niitaka’ pear. In: Iwahori S, Gemma H, Tanabe K, Webster A D, White A G, eds., Proceedings of the International Symposium on Asian Pears Commemorating the 100th Anniversary of Nijisseiki Pear, Vols I and Ii. Acta Horticulture, Kurayoshi, Japan. pp. 659–663.
Sun X, Pan B S, Xu W Y, Chen Q M, Wang Y, Ban Q Y, Xing C H, Zhang S L. 2021. Genome-wide identification and expression analysis of the pear autophagy-related gene PbrATG8 and functional verification of PbrATG8c in Pyrus bretschneideri Rehd. Planta, 253, 32.
Tanahashi M, Nakano T, Akamatsu H, Kodama M, Otani H, Osaki-Oka K. 2016. Alternaria alternata apple pathotype (A-mali) causes black spot of European pear. European Journal of Plant Pathology, 145, 787–795.
Tanahashi M, Yamaguchi Y, Yokoyama Y, Otani H. 2004. Black spot disease of European pear, a new disease caused by Alternaria alternata (Fries:Fries) Keissler. Japanese Journal of Phytopathology, 70, 168–175.
Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithofer A. 2012. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiology, 159, 1159–1175.
Wang D S, Guo X P, Wu Z Y, Zhang S P, Niu J J, Wang B. 2016. The performance of three Korea pear varieties in Henan province, China. Journal of Fruit Science, 33, 140–146. (in Chinese)
Wang J, Qu B, Dou S, Li L, Yin D D, Pang Z Q, Zhou Z Z, Tian M M, Liu G Z, Xie Q, Tang D Z, Chen X W, Zhu L. 2015. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC Plant Biology, 15, 49.
Wang R Z, Xue Y S, Fan J, Yao J L, Qin M F, Lin T, Lian Q, Zhang M Y, Li X L, Li J M, Sun M Y, Song B B, Zhang J Y, Zhao K J, Chen X, Hu H J, Fei Z J, Xue C, Wu J. 2021. A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit. Genome Biology, 22, 313.
Wang Y F, Liao Y Q, Wang Y P, Yang J W, Zhang N, Si H J. 2020. Genome-wide identification and expression analysis of StPP2C gene family in response to multiple stresses in potato (Solanum tuberosum L.). Journal of Integrative Agriculture, 19, 1609–1624.
Wang Y S, Guo P Y, Zhang J L, Xie Q L, Shen H, Hu Z L, Chen G P. 2021. Overexpression of the MADS-box gene SIMBP21 alters leaf morphology and affects reproductive development in tomato. Journal of Integrative Agriculture, 20, 3170–3185.
Wang Z Y, Bao Y F, Pei T, Wu T R, Du X, He M X, Wang Y, Liu Q F, Yang H H, Jiang J B, Zhang H, Li J F, Zhao T T, Xu X Y. 2020. Silencing the SLB3 transcription factor gene decreases drought stress tolerance in tomato. Journal of Integrative Agriculture, 19, 2699–2708.
Wen W, Wang R, Su L, Lv A, Zhou P, An Y. 2021. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.). Environmental and Experimental Botany, 184, 104373.
Wenneker M, Joosten N, Anbergen R, Vink P, van Bruggen A S. 2011. Epidemiology and effective control of Alternaria alternata, causal agent of dead (dormant) flower bud disease of pear. Acta Horticulturae, 909, 485–490.
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan M A, Tao S, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 23, 396–408.
Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. 2019. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. Journal of Experimental Botany, 70, 1525–1538.
Xu J H, Li M M, Jiao P, Tao H X, Wei N N, Ma F W, Zhang J K. 2015. Dynamic transcription profiles of “Qinguan” apple (Malus×domestica) leaves in response to Marssonina coronaria inoculation. Frontiers Plant Science, 6, 842.
Xu M Q, Zhang X Y, Dhanasekaran S, Godana E A, Yang Q Y, Zhao L A, Zhang H Y. 2021. Transcriptome analysis of postharvest pear (Pyrus pyrifolia Nakai) in response to Penicillium expansum infection. Scientia Horticulturae, 288, 110361.
Xu X B, Pan Y Y, Wang C L, Ying Q C, Song H M, Wang H Z. 2014. Overexpression of DnWRKY11 enhanced salt and drought stress tolerance of transgenic tobacco. Biologia, 69, 994–1000.
Yang X P, Hu H J, Yu D Z, Sun Z H, He X J, Zhang J G, Chen Q L, Tian R, Fan J. 2015. Candidate resistant genes of sand pear (Pyrus pyrifolia Nakai) to Alternaria alternata revealed by transcriptome sequencing. PLoS ONE, 10, e0135046.
Yang X P, Zhang J G, Fan J, Hu H J, Deng X Y, Li R M. 2018. Investigation and control countermeasures on the causes of early defoliation of main sand pear varieties in Hubei Province. Northern Horticulture, (07), 31–37. (in Chinese)
Yim Y H, Seo H, Kim S H. 2005. Effects of amounts of nitrogen supply, pruning severity, waterlogging, and removal of fruit cluster leaf on induction of floral bud necrosis in ‘Niitaka’ pears. Horticultural Science & Technology, 23, 188–191.
Yip A M, Horvath S. 2007. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, 8, 22.
Yuan X S, Yu Z P, Liu L, Xu Y, Zhang L, Han D G, Zhang S Z. 2020. Genome-wide identification and expression analysis of asparagine synthetase family in apple. Journal of Integrative Agriculture, 19, 1261–1273.
Zhang D W, Liu L L, Zhou D G, Liu X J, Liu Z S, Yan M L. 2020. Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea. Journal of Integrative Agriculture, 19, 1250–1260.
Zhang P F, Zhai L F, Zhang X K, Huang X Z, Hong N, Xu W X, Wang G P. 2015. Characterization of Colletotrichum fructicola, a new causal agent of leaf black spot disease of sandy pear (Pyrus pyrifolia). European Journal of Plant Pathology, 143, 651–662.
Zhou S J, Yan G X, Wu Y N, Zhai J X, Cong L, Zhang Z M. 2020. The PM removal process of wetland plant leaves with different rainfall intensities and duration. Journal of Environmental Management, 275, 111239.
Zhu Y C, Sun D X, Deng Y, An G L, Li W H, Si W J, Liu J P, Sun X W. 2020. Comparative transcriptome analysis of the effect of different heat shock periods on the unfertilized ovule in watermelon (Citrullus lanatus). Journal of Integrative Agriculture, 19, 528–540.
Zwack P J, Compton M A, Adams C I, Rashotte A M. 2016. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant Cell Reports, 35, 573–584.
[1] GUO Yun-xia, YANG Ruo-chen, DUAN Chun-hui, WANG Yong, HAO Qing-hong, JI Shou-kun, YAN Hui, ZHANG Ying-jie, LIU Yue-qin. Effect of dioscorea opposite waste on growth performance, blood parameters, rumen fermentation and rumen bacterial community in weaned lambs[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1833-1846.
[2] XU Peng-yue, XU Li, XU Hai-feng, HE Xiao-wen, HE Ping, CHANG Yuan-sheng, WANG Sen, ZHENG Wen-yan, WANG Chuan-zeng, CHEN Xin, LI Lin-guang, WANG Hai-bo.

MdWRKY40is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1704-1719.

[3] XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun. Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1412-1423.
[4] YU Xiao, DUAN Zi-qiang, QIN Xiao-peng, ZHU Ying-ying, HUANG Feng-hong, PENG Deng-feng, BAI Yan-hong, DENG Qian-chun. Elucidation of the structure, antioxidant, and interfacial properties of flaxseed proteins tailored by microwave treatment[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1574-1589.
[5] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[6] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[7] FENG Xi-kang, XIE Chun-di, LI Yong-yao, WANG Zi-shuai, BAI Li-jing. SCSMRD: A database for single-cell skeletal muscle regeneration[J]. >Journal of Integrative Agriculture, 2023, 22(3): 864-871.
[8] YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong. Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2023, 22(2): 495-504.
[9] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

[10] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[11] GUAN Zhi-bin, ZHANG Yan-qi, CHAI Xiu-juan, CHAI Xin, ZHANG Ning, ZHANG Jian-hua, SUN Tan. Visual learning graph convolution for multi-grained orange quality grading[J]. >Journal of Integrative Agriculture, 2023, 22(1): 279-291.
[12] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[13] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[14] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[15] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
No Suggested Reading articles found!