Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (9): 2247-2256    DOI: 10.1016/S2095-3119(20)63246-4
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Endogenous phytohormones and the expression of flowering genes synergistically induce flowering in loquat
CHI Zhuo-heng1, WANG Yong-qing1, DENG Qun-xian1, ZHANG Hui1, PAN Cui-ping1, YANG Zhi-wu2 
1 College of Horticulture, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Sichuan Academy of Forestry, Chengdu 610081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Flowering is an important process for the reproduction of higher plants.  Up to this point, the studies on flowering have mostly focused on the model plant Arabidopsis thaliana, and the flowering mechanism of fruit trees remains mostly unknown.  The diversity of the flowering time of loquat (Eriobotrya japonica Lindl.) makes it an ideal material to study the regulation of flowering.  In this study, we first observed the inflorescence bud differentiation in two varieties of loquat that had different blooming times (cv. Dawuxing (E. japonica), that blooms in the fall and cv. Chunhua (E. japonica×Eriobotrya bengalensis Hook. f.) that blooms in the spring) and found that the starting time of inflorescence bud differentiation and the speed of inflorescence development were responsible for the difference in blooming times.  The determination of endogenous phytohormones by high performance liquid chromatography (HPLC) indicated that abscisic acid (ABA), zeatin (ZT), and gibberellin (GA3) promoted flowering in loquat, while indole-3-acetic acid (IAA) was mainly involved in inflorescence bud differentiation in Chunhua.  A transcription level analysis illustrated that multiple flowering-related genes could respond to different signals, integrate to the TFL1, AP1 and FT genes, and then synergistically regulate flowering in loquat.  Thus, this study provides a new insight into flowering regulation mechanisms in loquat.
Keywords:  loquat        inflorescence bud differentiation        flowering        endogenous hormones        gene expression  
Received: 04 February 2020   Accepted:
Fund: This work was financially supported by the Key Research Project of Science and Technology, Sichuan, China (2016NYZ0034).
Corresponding Authors:  Correspondence WANG Yong-qing, E-mail: yqw14@sicau.edu.cn   
About author:  CHI Zhuo-heng, E-mail: chizhuoheng 0331@foxmail.com;

Cite this article: 

CHI Zhuo-heng, WANG Yong-qing, DENG Qun-xian, ZHANG Hui, PAN Cui-ping, YANG Zhi-wu. 2020. Endogenous phytohormones and the expression of flowering genes synergistically induce flowering in loquat. Journal of Integrative Agriculture, 19(9): 2247-2256.

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309, 1052–1056.
Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. 2006. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. European Molecular Biology Organization Journal, 25, 605–614.
Amasino R. 2010. Seasonal and developmental timing of flowering. The Plant Journal, 61, 1001–1013.
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics, 2, e106.
Bangerth K F. 2009. Floral induction in mature, perennial angiosperm fruit trees: Similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Horticulturae, 122, 153–163.
Bernier G. 1988. The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 175–219.
Blázquez M A, Ahn J H, Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 33, 168–171.
Bouché F, Guillaume L, Tocquin P, Périlleux C. 2016. FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research, 44, 1167–1171.
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. 1997. Inflorescence commitment and architecture in Arabidopsis. Science, 275, 80–83.
Cho L H, Yoon J, An G. 2017. The control of flowering time by environmental factors. The Plant Journal, 90, 708–719.
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 1030–1033.
Dong Y N, Deng Q X, Wang Y Q. 2008. Advances in germplasm resources and breeding of loquat in China. Subtropical Agriculture Research, 4, 91–96. (in Chinese)
Esumi T, Tao R, Yonemori K. 2005. Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sexual Plant Reproduction, 17, 277–287.
Fornara F, De Montaigu A, Coupland G. 2010. SnapShot: Control of flowering in Arabidopsis. Cell, 141, 550.
Fu X M, Kong W B, Peng G, Zhou J Y, Azam M, Xu C J, Grierson D, Chen K S. 2012. Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits. Journal of Experimental Botany, 63, 341–354.
Galvao V C, Horrer D, Kuttner F, Schmid M. 2012. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139, 4072–4082.
Koshita Y, Takahara T, Ogata T, Goto A. 1999. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 79, 185–194.
Kumar S V, Lucyshyn D, Jaeger K E, Alós E, Alvey E, Harberd N P, Wigge P A. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 484, 242–245.
Lee J H, Yoo S J, Park S H, Hwang, Lee J S, Ahn J H. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development, 21, 397–402.
Lin S Q, Yang X H, Liu C M, Hu Y L, He Y H, Hu G B, Zhang H L, He X L, Liu Y X, Liu Z L. 2004. Natural geographical distribution of genus Eriobotrya plants in China. Acta Horticulturae Sinca, 31, 569–573. (in Chinese)
Liu L, Zhu Y, Shen L S, Yu H. 2013. Emerging insights into florigen transport. Current Opinion in Plant Biology, 16, 607–613.
Liu Y X, Song H W, Liu Z L, Hu G B, Lin S Q. 2013. Molecular characterization of loquat EjAP1 gene in relation to flowering. Plant Growth Regulation, 70, 287–296.
Mei Y L, Liao M A, Ren Y J, Liu Y, Cheng J, Liu J, Cheng J, Liu L L. 2012. Study on fruit quality, phenological phases and shoot histomorphology of a new bud mutant line, ‘Chuanzao loquat’. Agricultural Science & Technology, 13, 1881–1884. 
Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K. 2009. Four TFL1/CEN -Like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus×domestica Borkh.). Plant Cell Physiology, 50, 394–412.
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee C, Onouch H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G. 2005. Distinct roles of gigantea in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell, 17, 2255–2270.
Mutasa-Gottgens E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60, 1979–1989.
Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. 2012. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nature Communications, 3, 808.
Porri A, Torti S, Romera-Branchat M, Coupland G. 2012. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139, 2198–2209.
Ratcliffe O J, Amaya I, Vincent C A, Rothstein S, Carpenter R, Enrico S, Coen E S, Bradley D J. 1988. A common mechanism controls the life cycle and architecture of plants. Development, 125, 1609–1615.
Reig C, Gil-Muñoz F, Vera-Sirera F, García-Lorca A, Martínez-Fuentes A, Mesejo C, Miguel A, Pérez-Amador M A, Agustí M. 2017. Bud sprouting and floral induction and expression of FT in loquat [Eriobotrya japonica (Thunb.) Lindl]. Planta, 246, 915–925.
Shannon S, Meeks-Wagner D R. 1991. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. The Plant Cell, 3, 877–892.
Shim J S, Kubota A, Imaizumi T. 2016. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology, 173, 5–15.
Shuai M M, Huang Y J. 2018. Advances of GIGANTEA and CONSTANS, the key genes of flowering in photoperiod pathway. Molecular Plant Breeding, 16, 5601–5607. (in Chinese)
Song Y H, Ito S, Imaizumi T. 2013. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends in Plant Science, 18, 575–583.
Srikanth A, Schmid M. 2011. Regulation of flowering time: All roads lead to rome. Cellular and Molecular Life Sciences,  68, 2013–2037.
Su W R, Huang K L, Shen R S, Chen W S. 2002. Abscisic acid affects floral initiation in Polianthes tuberosa. Journal of Plant Physiology, 159, 557–559.
Suárez-López P, Wheatley K, Robson F, Onouchi H, Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410, 1116–1120.
Wellmer F, Riechmann J L. 2010. Gene networks controlling the initiation of flower development. Trends in Plant Science, 26, 519–527.
Xu H X, Li X Y, Chen J W. 2017. Comparative transcriptome profiling of freezing stress responses in loquat (Eriobotrya japonica) fruitlets. Journal of Plant Research, 130, 893–907.
Zhang L. 2016. Studies on molecular mechanism of loquat flowering time regulation. Ph D thesis, South China Agricultural University, Guangzhou, China. (in Chinese)
Zhang L, Yu H, Lin S Q, Gao Y S. 2016. Molecular characterization of FT and FD homologs from Eriobotrya deflexa Nakai forma koshunensis. Frontiers in Plant Science, 7, doi: 10.3389/fpls.2016.00008
[1] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[2] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[3] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[4] LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. >Journal of Integrative Agriculture, 2022, 21(3): 725-735.
[5] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[6] YIN Liang-fen, ZHANG Shu-qin, DU Juan, WANG Xin-yu, XU Wen-xing, LUO Chao-xi . Monilinia fructicola on loquat: An old pathogen invading a new host[J]. >Journal of Integrative Agriculture, 2021, 20(7): 2009-2014.
[7] JI Xiao-hao, WANG Bao-liang, WANG Xiao-di, WANG Xiao-long, LIU Feng-zhi, WANG Hai-bo. Differences of aroma development and metabolic pathway gene expression between Kyoho and 87-1 grapes[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1525-1539.
[8] CHEN Chang-long, YUAN Fang, LI Xiao-ying, MA Rong-cai, XIE Hua. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1314-1326.
[9] WANG Lu-lu, ZHAO Chun-fang, LIU Chang-jun, ZHANG Hao, LIAN Ling. Analysis of DNA methylation of CD79B in MDV-infected chicken spleen[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2995-3002.
[10] WANG Xi-cheng, WU Wei-min, ZHOU Bei-bei, WANG Zhuang-wei, QIAN Ya-ming, WANG Bo, YAN Li-chun. Genome-wide analysis of the SCPL gene family in grape (Vitis vinifera L.)[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2666-2679.
[11] LIU Xiang, KANG Zhi-wei, YU Xing-lin, LI Fan, LIU Tong-xian, LI Qiang . Role of TRP channels and HSPs in thermal stress response in the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae)[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1530-1542.
[12] ZHANG Zhen, LIU Qiang, WANG Cong, GUO Gang, HUO Wen-jie, ZHANG Yan-li, PEI Cai-xia, ZHANG Shuan-lin. Effects of palm fat powder and coated folic acid on growth performance, ruminal fermentation, nutrient digestibility and hepatic fat accumulation of Holstein dairy bulls[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1074-1084.
[13] WANG Zi-yu, bAO Yu-fang, PEI Tong, WU Tai-ru, DU Xu, HE Meng-xi, WANG Yue, LIU Qi-feng, YANG Huan-huan, JIANG Jing-bin, ZHANG He, LI Jing-fu, ZHAO Ting-ting, XU Xiang-yang. Silencing the SLB3 transcription factor gene decreases drought stress tolerance in tomato[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2699-2708.
[14] WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin.
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1924-1935.
[15] WANG Shao-xi, SHI Feng-yan, DONG Xiang-xiang, LI Yu-xiang, ZHANG Zhi-hong, LI He. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in strawberry (Fragaria vesca)[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1587-1603.
No Suggested Reading articles found!