Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (6): 1530-1542    DOI: 10.1016/S2095-3119(19)62869-8
Special Focus: Physiology and interaction of insects with environmental factors Advanced Online Publication | Current Issue | Archive | Adv Search |
Role of TRP channels and HSPs in thermal stress response in the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae)
LIU Xiang1, KANG Zhi-wei2, YU Xing-lin2, LI Fan2, LIU Tong-xian2, LI Qiang1 
1 Department of Entomology, College of Plant Protection, Yunnan Agricultural University, Kunming 650000, P.R.China
2 State Key Laboratory of Crop Stress Biology for Arid Areas/Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Aphelinus asychis is an important aphid endoparasitoid.  Under field and greenhouse conditions, high temperature is one of the factors limiting the application of A. asychis for biological pest control.  To explore the potential role of transient receptor potential (TRP) channels and heat shock proteins (HSPs) in this process, we identified 11 genes encoding TRP channels and nine genes encoding HSPs.  Three proteins (AasyTRPA5, AasyPyrexia, AasyPainless) that belong to transient receptor potential ankyrin (TRPA) subfamily and nine HSPs are involved in the response to high temperature.  We also investigated the survival of A. asychis and the response of the identified TRP channels and HSPs to high temperature.  The results showed that the maximum temperature that allowed A. asychis survival was approximately 41°C; females had higher survival rates than that of the males at 40 and 41°C.  Short-term heat-shock resulted in increased expression of Aasyshsp in males, and Aasyhsp40, Aasyhsp68, Aasyhsp70-4, Aasyhsp70-5 and Aasyhsp90 were upregulated and then downregulated, whereas Aasyhsp70-3 was upregulated at 41°C.  Moreover, Aasyhsp40 and Aasyhsp90 showed higher expression levels in females, while Aasyshsp and Aasyhsp70-3 presented opposite expression patterns.  At temperature above 35°C, expression of AasyPyrexia in females was significant higher than that in males, whereas AasyPainless and AasyTRPA5 presented higher expression in males at 40 and 41°C, respectively.  Altogether, these results indicate that protection against thermal stress in A. asychis is coordinated by TRP channels and HSPs.  These findings provide a basis for understanding the potential mechanism of A. asychis in response to high temperatures.
 
Keywords:  Aphelinus asychis        TRP channels        heat-shock proteins        thermal stress        gene expression  
Received: 23 May 2019   Accepted:
Fund: This work was supported by the National Key Basic Research Program of China (973 Program; 2013CB127600)
Corresponding Authors:  Correspondence LIU Tong-xian, E-mail: txliu@nwsuaf.edu.cn; LI Qiang, E-mail: liqiangkm@126.com   
About author:  LIU Xiang, Mobile: +86-18700907734, E-mail: liuxiang_edu@163.com;

Cite this article: 

LIU Xiang, KANG Zhi-wei, YU Xing-lin, LI Fan, LIU Tong-xian, LI Qiang . 2020. Role of TRP channels and HSPs in thermal stress response in the aphid parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae). Journal of Integrative Agriculture, 19(6): 1530-1542.

Ahearn G A, Hadley N F. 1969. The effects of temperature and humidity on water loss in two desert tenebrionid beetles, Eleodes armata and Cryptoglossa verrucosa. Comparative Biochemistry & Physiology, 30, 739–749.
Angilletta M J , Cooper B S, Schuler M S, Boyles J G. 2010. The evolution of thermal physiology in endotherms. Journal of Thermal Biology, 27, 249–268.
Blomquist G J, Bagneres A G. 2010. Introduction: History and overview of hydrocarbons. In: Blomquist G J, Bagneres A G, eds., Insect Hdrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge. pp. 3–18.
Burdon R H. 1988. The heat shock proteins. Endeavour, 12, 133–138.
Chown S L, Sorensen J G, Terblanche J S. 2011. Water loss in insects: An environmental change perspective. Insect Physiology, 57, 1070–1084.
Cui Y D, Du Y Z, Lu M X, Qiang C K. 2010. Cloning of the heat shock protein 60 gene from the stem borer, Chilo suppressalis, and analysis of expression characteristics under heat stress. Journal of Insect Science, 10, 100.
De B M, Stoks R. 2010. Adaptive sex-specific life history plasticity to temperature and photoperiod in a damselfly. Journal of Evolutionary Biology, 16, 986–995.
Doyon J, Boivin G. 2005. The effect of development time on the fitness of female Trichogramma evanescens. Journal of Insect Science, 5, 4.
Duman J G. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63, 327–357.
Esperk T, Kjaersgaard A, Walters R J, Berger D, Blanckenhorn W U. 2016. Plastic and evolutionary responses to heat stress in a temperate dung fly: Negative correlation between basal and induced heat tolerance? Journal of Evolutionary Biology, 29, 900–915.
Feder M E, Hofmann G E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282.
Folk D G, Zwollo P, Rand D M, Gilchrist G W. 2006. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. Journal of Experimental Biology, 209, 3964.
Fowler M A, Montell C. 2013. Drosophila TRP channels and animal behavior. Life Sciences, 92, 394–403.
Frank S D. 2010. Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biological Control, 52, 8–16.
Garrido C, Paul C, Seigneuric R, Kampinga H H. 2012. The small heat shock proteins family: The long forgotten chaperones. International Journal of Biochemistry & Cell Biology, 44, 1588–1592.
Gehring W J, Wehner R. 1995. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proceedings of the National Academy of Sciences of the United States of America, 92, 2994–2998.
Gibbs A G. 1998. Water-proofing properties of cuticular lipids. American Zoologist, 38, 471–482.
Hallman G J, Denlinger D L. 1998. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Westview Press, Boulder, CO, USA; Oxford, UK.
Hamada F N, Rosenzweig M, Kang K, Pulver S R, Ghezzi A, Jegla T J, Garrity P A. 2008. An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454, 217–220.
Huang L H, Chen B, Kang L. 2007. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. Journal of Insect Physiology, 53, 1199–1205.
Huang L H, Kang L. 2010. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Molecular Biology, 16, 491–500.
Jena K, Kar P K, Kausar Z, Babu C S. 2013. Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. Journal of Thermal Biology, 38, 199–204.
Jervis M A, Ferns P N, Heimpel G E. 2003. Body size and the timing of egg production in parasitoid wasps: A comparative analysis. Oikos, 102, 164–172.
Johnston J A, Ward C L, Kopito R R. 1998. Aggresomes: A cellular response to misfolded proteins. Journal of Cell Biology, 143, 1883–1898.
Kang Z W, Liu F H, Liu X, Yu W B, Tan X L, Zhang S Z, Tian H G, Liu T X. 2017a. The potential coordination of the heat-shock proteins and antioxidant enzyme genes of Aphidius gifuensis in response to thermal stress. Frontiers in Physiology, 8, 976.
Kang Z W, Liu F H, Pang R P, Tian H G, Liu T X. 2018. Effect of sublethal doses of imidacloprid on the biological performance of aphid endoparasitoid Aphidius gifuensis (Hymenoptera: Aphidiidae) and influence on its related gene expression. Frontiers in Physiology, 9, 1729.
Kang Z W, Liu F H, Tian H G, Zhang M, Guo S S, Liu T X. 2017b. Evaluation of the reference genes for expression analysis using quantitative real-time PCR in the green peach aphid, Myzus persicae. Insect Science, 24, 222–234.
Ka?mierczuk A, Kiliańska Z M. 2009. The pleiotropic activity of heat-shock proteins. Advances in Hygiene and Experimental Medicine, 63, 502–521.
Kim K K, Kim R, Kim S H. 1998. Crystal structure of a small heat-shock protein. Nature, 394, 595.
Krebs R A, Thompson K A. 2006. Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster. Genetica, 128, 217–225.
Kwon Y, Sang H K, Ronderos D S, Lee Y, Akitake B, Woodward O M, Guggion W B, Simth D P, Montell C. 2010a. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Current Biology, 20, 1672–1678.
Kwon Y, Shen W L, Shim H S, Montell C. 2010b. Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a trpv channel in chordotonal neurons. Journal of Neuroscience, 30, 10465–10471.
Kwon Y, Shim H S, Wang X, Montell C. 2008. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nature Neuroscience, 11, 871–873.
Lee Y, Lee Y, Lee J, Bang S, Hyun S, Kang J, Hong S T, Bae E, Kaang B K, Kim J. 2005. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nature Genetics, 37, 305.
Li C D, Byeon Y W, Choi B R. 2007. An aphelinid species, Aphelinus asychis Walker (Hymenoptera: Aphelinidae) new to Korea. Journal of Asia-Pacific Entomology, 10, 13–15.
Liu Y, Dong J, Chi B, Liu Y. 2016. Thermal activity thresholds of parasitoids Aphidius avenae and Aphidius gifuensis (Hymenoptera: Braconidae): Implications for their efficacy as biological control agents in the same location. Florida Entomologist, 99, 691–695.
Liu Z, Xi D, Kang M, Guo X, Xu B. 2012. Molecular cloning and characterization of Hsp27.6: The first reported small heat shock protein from Apis cerana cerana. Cell Stress & Chaperones, 17, 539–551.
Liu Z, Yao P, Guo X, Xu B. 2014. Two small heat shock protein genes in Apis cerana cerana: Characterization, regulation, and developmental expression. Gene, 545, 205–214.
Lu M X, Hua J, Cui Y D, Du Y Z. 2014. Five small heat shock protein genes from Chilo suppressalis: Characteristics of gene, genomic organization, structural analysis, and transcription profiles. Cell Stress & Chaperones, 19, 91–104.
Luca F D, Vito M D, Fanelli E, Reyes A, Greco N, Giorgi C D. 2009. Characterization of the heat shock protein 90 gene in the plant parasitic nematode Meloidogyne artiellia and its expression as related to different developmental stages and temperature. Gene, 440, 16–22.
Morrow G, Pécheur M L, Tanguay R M. 2015. Drosophila melanogaster, mitochondrial Hsp22: A role in resistance to oxidative stress, aging and the mitochondrial unfolding protein response. Biogerontology, 17, 61–70.
Nathan D F, Lindquist S. 1995. Mutational analysis of Hsp90 function: Interactions with a steroid receptor and a protein kinase. Molecular & Cellular Biology, 15, 3917–3925.
Neely G G, Keene A C, Duchek P, Chang E C, Wang Q P, Aksoy Y A, Rosenzweig M, Costigan M, Woolf C J, Garrity P A, Penninger J M. 2011. TrpA1 regulates thermal nociception in Drosophila. PLoS ONE, 6, e24343.
Palter K B, Watanabe M, Stinson L, Stinson L, Mahowald A P, Craig E A. 1986. Expression and localization of Drosophila melanogaster hsp70 cognate proteins. Molecular & Cellular Biology, 6, 1187–1203.
Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. 2003. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochemical & Biophysical Research Communications, 304, 505–512.
Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution & Systematics, 37, 637–669.
Pelham, Hugh R B. 1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 46, 959–961.
Rajpurohit S, Hanus R, Vrkoslav V, Behrman E L, Bergland A O, Petrov D, Cvacka J, Schmidt P S. 2017. Adaptive dynamics of cuticular hydrocarbons in Drosophila. Journal of Evolutionary Biology, 30, 66-80.
Rinehart J P, Denlinger D L. 2010. Heat-shock protein 90 is down-regulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress. Insect Molecular Biology, 9, 641–645.
Roberts S P, Feder M E. 2010. Changing fitness consequences of hsp70 copy number in transgenic Drosophila larvae undergoing natural thermal stress. Functional Ecology, 14, 353–357.
Rosenzweig M, Brennan K M, Tayler T D, Phelps P O, Patapoutian A, Garrity P A. 2005. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Development, 19, 419–424.
Rosenzweig M, Kang K, Garrity P A. 2008. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 105, 14668–14673.
Sagarra L A, Vincent C, Stewart R K. 2001. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bulletin of Entomological Research, 91, 363–367.
Schmitt E, Parcellier A, Gurbuxani S, Cande C, Hammann A, Morales M C, Hunt C R, Dix D J, Kroemer R T, Giordanetto F, Jäättelä M, Penninger J M, Pance A, Kroemer G, Garrido C. 2003. Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Research, 63, 8233–8240.
Shaknovich R, Shue G, Kohtz D S. 1992. Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Molecular and Cellular Biology, 12, 5059–5068.
Shi M, Wang Y N, Zhu N, Chen X X. 2013. Four heat shock protein genes of the endoparasitoid wasp, Cotesia vestalis, and their transcriptional profiles in relation to developmental stages and temperature. PLoS ONE, 8, e59721.
Sokabe T, Tsujiuchi S, Kadowaki T, Tominaga M. 2008. Drosophila painless is a Ca2+-requiring channel activated by noxious heat. Journal of Neuroscience, 28, 9929–9938.
Sørensen J G, Kristensen T N, Loeschcke V. 2010. The evolutionary and ecological role of heat shock proteins. Ecology Letters, 6, 1025–1037.
Stankiewicz A R, Lachapelle G, Foo C P, Radicioni S M, Mosser D D. 2005. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. Journal of Biological Chemistry, 280, 38729–38739.
Stillwell R C, Blanckenhorn W U, Teder T, Davidowitz G, Fox C W. 2010. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annual Review of Entomology, 55, 227–245.
Storey K B. 1997. Organic solutes in freezing tolerance. Comparative Biochemistry and Physiology (A: Comparative Physiology), 117, 319–326.
Teder T, Tammaru T. 2010. Sexual size dimorphism within species increases with body size in insects. Oikos, 108, 321–334.
Tissiéres A, Mitchell H K, Tracy U M. 1974. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84, 389–398.
Tracey W D, Wilson R I, Laurent G, Benzer S. 2003. Painless, a Drosophila gene essential for nociception. Cell, 113, 261–273.
Venkatachalam K, Montell C. 2007. Trp channels. Annual Review of Biochemistry, 76, 387–417.
Wang H S, Kang L. 2005. Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs. Cryobiology, 51, 220–229.
Wang S Y, Liang N N, Tang R, Liu Y H, Liu T X. 2016. Brief heat stress negatively affects the population fitness and host feeding of Aphelinus asychis (Hymenoptera: Aphelinidae) parasitizing, Myzus persicae (Hemiptera: Aphididae). Environmental Entomology, 45, 719–725.
Wartmann M, Davis R J. 1994. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. Journal of Biological Chemistry, 269, 6695–6701.
Wetsel W C. 2011. Sensing hot and cold with TRP channels. International Journal of Hyperthermia, 27, 388.
Wettstein G, Bellaye P S, Micheau O, Bonniaud P. 2012. Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? International Journal of Biochemistry & Cell Biology, 44, 1680–1686.
Wilbert H. 1969. The causes of sexual difference in the size of Aphelinus asychis Walker (Hym, Aphelinidae). Parasitology Research, 32, 220–236.
Will T, Schmidtberg H, Skaljac M, Vilcinskas A. 2017. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum. Development Genes & Evolution, 227, 1–9.
Xia X F, Lin H L, Zheng D D, Yang G, You M S. 2013. Identification and expression patterns of heat shock protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Acta Entomologica Sinica, 56, 457–464. (in Chinese)
Xu S Y, Cang C L, Liu X F, Peng Y Q, Ye Y Z, Zhao Z Q, Guo A K. 2006. Thermal nociception in adult Drosophila: Behavioral characterization and the role of the painless gene. Genes Brain & Behavior, 5, 602–613.
Yocum G D, Joplin K H, Denlinger D L. 1998. Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochemistry & Molecular Biology, 28, 677–682.
Zhang G, Storey J M, Storey K B. 2011. Chaperone proteins and winter survival by a freeze tolerant insect. Journal of Insect Physiology, 57, 1115–1122.
Zhang Y Y, Liu Y L, Guo X L, Li Y L, Gao H R, Guo X Q, Xu B H. 2014. sHsp22.6, an intronless small heat shock protein gene, is involved in stress defence and development in Apis cerana cerana. Insect Biochemistry & Molecular Biology, 53, 1–12.
Zhong L X, Bellemer A, Yan H D, Honjo K, Robertson J, Hwang R Y, Pitt G S, Tracey W D. 2012. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Reports, 1, 43–55.
Zhu Y C, Fang Q Q. 2010. Phylogenetic relationships of introduced Aphelinus (Hymenoptera: Aphelinidae), biological control agents of the Russian wheat aphid (Homoptera: Aphididae). Insect Science, 16, 277–285.
[1] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[2] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[3] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[4] LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. >Journal of Integrative Agriculture, 2022, 21(3): 725-735.
[5] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[6] JI Xiao-hao, WANG Bao-liang, WANG Xiao-di, WANG Xiao-long, LIU Feng-zhi, WANG Hai-bo. Differences of aroma development and metabolic pathway gene expression between Kyoho and 87-1 grapes[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1525-1539.
[7] CHEN Chang-long, YUAN Fang, LI Xiao-ying, MA Rong-cai, XIE Hua. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1314-1326.
[8] WANG Lu-lu, ZHAO Chun-fang, LIU Chang-jun, ZHANG Hao, LIAN Ling. Analysis of DNA methylation of CD79B in MDV-infected chicken spleen[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2995-3002.
[9] WANG Xi-cheng, WU Wei-min, ZHOU Bei-bei, WANG Zhuang-wei, QIAN Ya-ming, WANG Bo, YAN Li-chun. Genome-wide analysis of the SCPL gene family in grape (Vitis vinifera L.)[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2666-2679.
[10] CHI Zhuo-heng, WANG Yong-qing, DENG Qun-xian, ZHANG Hui, PAN Cui-ping, YANG Zhi-wu. Endogenous phytohormones and the expression of flowering genes synergistically induce flowering in loquat[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2247-2256.
[11] ZHANG Zhen, LIU Qiang, WANG Cong, GUO Gang, HUO Wen-jie, ZHANG Yan-li, PEI Cai-xia, ZHANG Shuan-lin. Effects of palm fat powder and coated folic acid on growth performance, ruminal fermentation, nutrient digestibility and hepatic fat accumulation of Holstein dairy bulls[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1074-1084.
[12] WANG Zi-yu, bAO Yu-fang, PEI Tong, WU Tai-ru, DU Xu, HE Meng-xi, WANG Yue, LIU Qi-feng, YANG Huan-huan, JIANG Jing-bin, ZHANG He, LI Jing-fu, ZHAO Ting-ting, XU Xiang-yang. Silencing the SLB3 transcription factor gene decreases drought stress tolerance in tomato[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2699-2708.
[13] JI Shun-xia, SHEN Xiao-na, LIANG Lin, WANG Xiao-di, LIU Wan-xue, WAN Fang-hao, Lü Zhi-chuang. Molecular characteristics and temperature tolerance function of the transient receptor potential in the native Bemisia tabaci AsiaII3 cryptic species[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2746-2757.
[14] WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin.
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1924-1935.
[15] WANG Shao-xi, SHI Feng-yan, DONG Xiang-xiang, LI Yu-xiang, ZHANG Zhi-hong, LI He. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in strawberry (Fragaria vesca)[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1587-1603.
No Suggested Reading articles found!