Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (10): 2706-2715    DOI: 10.1016/S2095-3119(21)63609-2
Special Issue: 植物病理合辑Plant Protection—Plant Pathology 线虫合辑Nematology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Isolation and molecular characterization of entomopathogenic nematode, Heterorhabditis sp. from an arable land in Nigeria
Fisayo Y. DARAMOLA1, Osarenkhoe O. OSEMWEGIE1, Stephen O. OWA1, Samuel B. ORISAJO2, Evbuomwan IKPONMWOSA1, Elizabeth T. ALORI3 
1 Department of Microbiology, Landmark University, Omu Aran 370102, Kwara State, Nigeria
2 Crop Protection Division, Cocoa Research Institute of Nigeria, Ibadan 200257, Oyo State, Nigeria
3 Department of Crop and Soil Sciences, Landmark University, Omu Aran 370102, Kwara State, Nigeria
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The occurrence of entomopathogenic nematodes (EPNs) in arable soil samples from Nigeria was investigated using Baermann extraction tray and insect-bait (White’s trap) techniques.  Isolates were tested for infectivity using the larvae of Galleria mellonella (greater moth) and Tenebrio molitor (mealworm).  The study revealed a new species of Heterorhabditis (MT371593) in soil samples that were randomly collected from an arable farmland cultivated with cassava TMS-30572 at the Teaching and Research Farm of Landmark University, Nigeria.   Amplification of the internal transcribed spacer region (ITS) of the ribosomal DNA produced a nucleotide sequence of 933 base pairs (bp).  A BLASTN search of GenBank showed that the sequence of the Nigerian isolate is identical at 99% similarity to that of Heterorhabditis sp. from Thailand.   Infectivity test of the isolate showed 100% mortality against T. molitor larvae within 48 h of exposure while only 80% mortality was recorded for G. mellonella after 1 week of exposure.  This is the first account of Heterorhabditis sp. in Nigeria.  The varying degrees of infectivity against mealworm and greater moth observed in this study proved that the Nigerian isolate of Heterorhabditis sp. could potentially be an attractive option in the management of insect pests of cash crops.
Keywords:  biological control        EPNs        Heterorhabditis sp.        ribosomal DNA        Tenebrio molitor  
Received: 27 May 2020   Accepted:
Fund: The authors are grateful to the Management of Landmark University for financial assistance and to Prof. A. P. Malan of the Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa for providing guidance with molecular identification.
Corresponding Authors:  Correspondence Fisayo Y. DARAMOLA, E-mail: fydaramola@gmail.com, Daramola.fisayo@lmu.edu.ng   

Cite this article: 

Fisayo Y. DARAMOLA, Osarenkhoe O. OSEMWEGIE, Stephen O. OWA, Samuel B. ORISAJO, Evbuomwan IKPONMWOSA, Elizabeth T. ALORI. 2021. Isolation and molecular characterization of entomopathogenic nematode, Heterorhabditis sp. from an arable land in Nigeria. Journal of Integrative Agriculture, 20(10): 2706-2715.

Abd-Elgawad M M M. 2017a. Comments on the economic use of entomopathogenic nematodes against insect pests. Bulletin of National Research Council, 41, 66–84.
Abd-Elgawad M M M. 2017b. Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In: Abd-Elgawad M M M, Askary T H, Coupland J, eds., Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. Commonwealth Agricultural Bureaux International, Wallingford. pp. 473–501.
Abd-Elgawad M M M. 2019. Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. Egyptian Journal of Biological Pest Control, 29, 1–8.
Akyazi F, Ansari M A, Ahmed B I, Crow W T, Mekete T. 2012. First record on entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Nigerian soil and their morphometrical and ribosomal sequence analysis. Nematologia Mediterranea, 40, 95–100.
Aliyu H U, Dahiru M, Owuama C I. 2015. Isolation of entomopathogenic nematode-bacteria complex with a potential for use as a biological insecticide in Nigeria. Journal of Environmental Issues and Agriculture in Developing Countries, 7, 37–47.
Aliyu H U, Tahir F, Agbo E B, Kela S L. 2016. The potential of controlling insect pests with nematode-bacteria complex based biological insecticides in Nigeria. International Journal of Agriculture and Environmental Research, 3, 3471–3485.
Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSI BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
Bajc N, Dr?aj U, Trdan S, Laznik ?. 2017. Compatibility of acaricides with entomopathogenic nematodes (Steinernema and Heterorhabditis). Nematology, 19, 891–898.
Banu G J, Nguyen K B, Rajendran G. 2005. Occurrence and distribution of entomopathogenic nematodes in Kerala, India. International Journal of Nematology, 15, 9–16.
Bhat A H, Chaubey A K, Aksary T H. 2020. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egyptian Journal of Biological Pest Control, 30, 1–15.
Bedding R A, Akhurst R J. 1975. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica, 21, 109–110.
Campos-Herrera R, Barbercheck M, Hoy C W, Stock S P. 2012. Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. Journal of Nematology, 44, 162–176.
Chaerani, Prabowo H, Indrayani I G A A. 2018. Isolation and molecular identification of entomopathogenic nematodes (Steinernema and Heterorhabditis) from East Java and Bali. Jurnal AgroBiogen, 14, 85–96.
Claudius-Cole A O. 2018. Potential of entomopathogenic nematodes for the management of Sesamia calamistis in Nigeria. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 11, 48–53.
Coyne D L, Nicol J M, Claudius-Cole B. 2014. Practical Plant Nematology: A Field and Laboratory Guide. 2nd ed. SP-IPM Secretariat, IITA, Cotonou. p. 82.
Divya K, Sankar M. 2009. Entomopathogenic nematodes in insect management. Indian Journal of Science and Technology, 2, 53–60.
Dolgin E S, Félix M A, Cutter A D. 2008. Hakuna Nematoda: Genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity, 100, 304–315.
Dolinski C, Kamitani F L, Machado I R, Winter C E. 2008. Molecular and morphological characterization of heterorhabditid entomopathogenic nematodes from the tropical rainforest in Brazil. Memórias do Instituto Oswaldo Cruz, 103, 150–159.
Dutky S R, Thompson J V, Cantwell G E. 1964. A technique for mass propagation of the DD-136 nematode. Journal of Insect Pathology, 6, 417–422.
Ehlers R U. 1996. Current and future use of nematodes in biocontrol: Practice and commercial aspects with regard to regulatory policy issues. Biocontrol Science and Technology, 6, 303–316.
Ehlers R U. 2001. Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology, 56, 623–633.
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
Gaugler R, Kaya H K. 1990. Entomopathogenic Nematodes in Biological Control. Chemical Rubber Company (CRC Press), Boca Raton, FL, USA. p. 365.
Gulcu B, Hodson A, Omaleki V, Ross A B, Lewis E E. 2019. A biological control approach to reducing Naupactus godmani (Curculionidae) populations in citrus using entomopathogenic nematodes. Crop Protection, 115, 99–103.
Hall T A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hiltpold I. 2015. Prospects in the application technology and formulation of entomopathogenic nematodes for biological control of insect pests. In: Campos-Herrera R, ed., Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer International Publishing, Heildelberg. pp. 187–205.
Hiltpold I, Moore B D, Johnson S N. 2020. Elevated atmospheric carbon dioxide concentrations alter root morphology and reduce the effectiveness of entomopathogenic nematodes. Plant Soil, 447, 29–38.
Kapranas A, Sbaiti I, Degen T, Turlings T J C. 2020. Biological control of cabbage fly Delia radicum with entomopathogenic nematodes: Selecting the most effective nematode species and testing a novel application method. Biological Control, 144, 104212.
Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
Kour S, Khurma U, Brodie G, Hazir S. 2020. Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in Viti Levu, Fiji Islands. Journal of Nematology, 52, 1–17.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.
Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M. 2015. Insect patho­gens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.
Lacey L A, Georgis R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44, 218–225.
Laznik ?, Trdan S. 2014. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science, 70, 784–789.
Laznik ?, Trdan S. 2017. Influence of herbicides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). International Journal of Pest Management, 63, 105–111.
Malan A P, Ferreira T. 2017. Entomopathogenic nematodes. In: Fourie H, Spaull V W, Jones R K, Daneel M S, De Wale D, eds., Nematology in South Africa: A View from the 21st Century. Springer International, Berlin. pp. 459–480.
Malan A P, Knoetze R, Moore S D. 2011. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology, 108, 115–125.
Malan A P, Moore S D. 2016. Evaluation of local entomopathogenic nematodes for the control of false codling moth, Thaumatotibia leucotreta (Meyrick, 1913), in a citrus orchard in South Africa. African Entomology, 24, 489–501.
Nguyen K B. 2007. Methodology, morphology and identi?cation. In: Nguyen K B, Hunt D J, eds., Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts. Nematology Monographs and Perspectives 5. Leiden, The Netherlands, Brill. pp. 59–119.
Nguyen K B, Hunt D J. 2007. Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts. Brill, Leiden, Netherlands. pp. 809–816.
Nguyen K B, Malan A P, Gozel U. 2006. Steinernema khoisanae n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology, 8, 157–175.
Odendaal D, Addison M F, Malan A P. 2016. Evaluation of aboveground application of entomopathogenic nematodes for the control of diapausing codling moth (Cydia pomonella L.) under natural conditions. African Entomology, 24, 61–74.
Platt T, Stokwe N F, Malan A P. 2018. Potential of local entomopathogenic nematodes for control of the vine mealybug, Planococcus ficus. South African Journal of Enology and Viticulture, 39, 1–8.
Platt T, Stokwe N F, Malan A P. 2020. A review of the potential use of entomopathogenic nematodes to control above-ground insect pests in South Africa. South African Journal of Enology and Viticulture, 41, 1–16. 
Popiel I, Hominick W M. 1992. Nematodes as biological control agents. Advances in Parasitology, 31, 381–433.
Qing X, Bik H, Yergaliyev T M, Gu J, Fonderie P, Brown-Miyara S, Szitenberg A, Bert W. 2019. Widespread prevalence but contrasting patterns of intragenomic rRNA polymorphisms in nematodes: Implications for phylogeny, species delimitation and life history inference. Molecular Ecology Resources, 20, 318–332.
Rahoo A M, Mukhtar T, Bughio B A, Rahoo R K. 2019. Comparison of infectivity and productivity of Steinernema feltiae and Heterorhabditis bacteriophora in Galleria mellonella and Tenebrio molitor. Pakistan Journal of Zoology, 51, 717–724.
Shapiro-Ilan D, Bruck D J, Lacey L A. 2012. Principles of epizootiology and microbial control. In: Vega F E, Kaya H K, eds., Insect Pathology. 2nd ed. Academic Press, San Diego. pp. 29–72.
Shapiro-Ilan D I, Gaugler R. 2002. Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology and Biotechnology, 28, 137–146.
Shapiro-Ilan D I, Gouge D H, Koppenhöfer A M. 2002. Factors affecting commercial success: Case studies in cotton, turf and citrus. In: Gaugler R, ed., Entomopathogenic Nematology. Commonwealth Agricultural Bureaux International, New York, NY. pp. 333–356.
Shapiro-Ilan D I, Gouge D H, Piggott S J, Patterson F J. 2006. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38, 124–133.
Shapiro-Ilan D I, Han R, Qiu X. 2014. Production of entomopathogenic nematodes. In: Morales-Ramos J, Rojas G, Shapiro-Ilan DI, eds., Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens. Academic Press, San Diego. pp. 321–356.
Shapiro-Ilan D I, Hazir S, Glazer I. 2017. Basic and applied research: Entomopathogenic nematodes. In: Lacey L A, ed., Microbial Agents for Control of Insect Pests: From Discovery to Commercial Development and Use. Academic Press, Amsterdam. pp. 91–105.
Stevens G, Lewis E. 2017. Status of entomopathogenic nematodes in integrated pest management strategies in the USA. In: Abd-Elgawad M M M, Askary T H, Coupland J, eds., Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. Commonwealth Agricultural Bureaux International, Wallingford. pp. 289–311.
Stock S P, Strong D R, Gardner S L. 1996. Identification of Heterorhabditis (Nematoda: Heterorhabditidae) from california with a new species isolated from the larvae of the ghost moth Hepialis californicus (Lepidoptera: Hepialidae) from the bodega bay natural reserve. Fundamental of Applied Nematology, 19, 585–592.
Tarasco E, Clausi M, Rappazzo G, Panzavolta T, Curto G, Sorino R, Oreste M, Longo A, Leone D, Tiberi R, Vinciguerra M T, Triggiani O. 2015. Biodiversity of entomopathogenic nematodes in Italy. Journal of Helminthology, 89, 359–366.
De Waal J Y, Malan A P, Addison M F. 2011. Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in temperate regions. Biocontrol Science and Technology, 20, 489–502.
White G F. 1927. A method for obtaining infective nematode larvae from cultures. American Association of Advanced Sciences, 66, 302–303.
Woodring J L, Kaya H K. 1988. Steinernematid and heterorhabditid nematodes: A handbook of biology and techniques. Southern Cooperative ries Bulletin, Arkansas Agricultural Experiment Station. Fayetteville Arkansas,  331, 1–17.
Yan X, Waweru B, Qiu X, Hategekimana A, Ka­juga J, Li H, Toepfer S. 2016. New entomopathogenic nematodes from semi-natural and smallholder farming habitats of Rwanda. Biocontrol Science and Technology, 26, 820–834.
van Zyl C, Malan A P. 2014. The role of entomopathogenic nematodes as biological control agents of insect pests, with emphasis on the history of their mass culturing and in vivo production. African Entomology, 22, 235–249.
van Zyl C, Malan A P. 2015. Cost-effective culturing of Galleria mellonella and Tenebrio molitor and entomopathogenic nematode production in various hosts. African Entomology, 23, 361–375.
[1] XUAN Jing-li, XIAO Yue, YE Fu-yu, ZHANG Yi-bo, TAO Shu-xia, GUO Jian-yang, LIU Wan-xue. High temperatures do not decrease biocontrol potential for the host-killing parasitoid Neochrysocharis formosa (Hymenoptera: Eulophidae) on agromyzid leafminers[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1722-1730.
[2] LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming . Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)[J]. >Journal of Integrative Agriculture, 2021, 20(3): 829-839.
[3] CHEN Zu-wen, YANG Yan-chao, ZHANG Jian-feng, JIN Ming-hui, XIAO Yu-tao, XIA Zhi-chao, LIU Yuan-yuan, YU Sai-zhen, YANG Yong-bo, WANG Yuan, LI Yi, LIU Kai-yu. Susceptibility and tissue specificity of Spodoptera frugiperda to Junonia coenia densovirus[J]. >Journal of Integrative Agriculture, 2021, 20(3): 840-849.
[4] HUANG Xiao-long, JIANG Ting, WU Zhen-ping, ZHANG Wan-na, XIAO Hai-jun . Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis[J]. >Journal of Integrative Agriculture, 2020, 19(3): 785-792.
[5] Oluwashola OLANIYAN, Neus RODRíGUEZ-GASOL, Nathalie CAYLA, Eleonor MICHAUD, Steve D. WRATTEN.
Bactericera cockerelli (Sulc), a potential threat to China’s potato industry
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 338-349.
[6] ZHENG Ya-qiang, ZHANG Li-min, CHEN Bin, YAN Nai-sheng, GUI Fu-rong, ZAN Qing-an, DU Guang-zu, HE Shu-qi, LI Zheng-yue, GAO Yu-lin, XIAO Guan-li.
Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 394-405.
[7] GUO Qing-yun, CHENG Liang, ZHU Hai-xia, LI Wei, WEI You-hai, CHEN Hong-yu, GUO Liang-zhi, WENG Hua, WANG Jian . Herbicidal activity of Aureobasidium pullulans PA-2 on weeds and optimization of its solid-state fermentation conditions[J]. >Journal of Integrative Agriculture, 2020, 19(1): 173-182.
[8] WANG Zhi-zhi, LIU Yin-quan, SHI Min, HUANG Jian-hua, CHEN Xue-xin. Parasitoid wasps as effective biological control agents[J]. >Journal of Integrative Agriculture, 2019, 18(4): 705-715.
[9] XIAO Ya-jing, GAO Tan-tan, PENG Qi, ZHANG Jie, SUN Dong-mei, SONG Fu-ping. Transcriptional profile of gene clusters involved in the methylerythritol phosphate pathway in Bacillus subtilis 916[J]. >Journal of Integrative Agriculture, 2019, 18(3): 644-655.
[10] YUAN Hui-guo, WU Sheng-yong, LEI Zhong-ren,?Silvia I. Rondon, GAO Yu-lin. Sub-lethal effects of Beauveria bassiana (Balsamo) on field populations of the potato tuberworm Phthorimaea operculella Zeller in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 911-918.
[11] LI Jing, WEI Tao, SUN Ai-rui , NI Han-wen. Evaluation of Curvularia lunata Strain B6 as a Potential Mycoherbicide to Control Barnydrgrass (Echinochloa crus-galli)[J]. >Journal of Integrative Agriculture, 2013, 12(7): 1201-1207.
No Suggested Reading articles found!