Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (9): 2052-2062    DOI: 10.1016/S2095-3119(19)62666-3
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines
YUE Xiao-feng1*, JU Yan-lun1*, TANG Zi-zhu1, ZHAO Ya-meng1, JIAO Xu-liang2, ZHANG Zhen-wen1, 3  
1 College of Enology, Northwest A&F University, Yangling 712100, P.R.China
2 Sino-French Joint Venture Dynasty Winery Ltd., Tianjin 300402, P.R.China
3 Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The effects of the severity and timing of leaf removal (LR) on the amino acids of Sauvignon Blanc grapes and wines were studied during the 2017 growing season.  High-performance liquid chromatography (HPLC) was used to analyze the amino acids profiles of grape berries and wines.  The basal leaves were removed at three time points (40, 56 and 72 days after flowering, named LR40, LR56 and LR72, respectively) at two severity levels (one at which the first, third, and fifth basal leaves of each shoot were removed (50% level); and another at which the first six basal leaves were removed (100% level)).  The results showed that leaf removal had little impact on total soluble solids (°Brix), titratable acidity, pH or berry weight.  The LR72-50% treated grapes had higher berry weight, titratable acidity and °Brix than those of the other treatments.  The highest concentrations of total amino acids and of total amino acids except proline were detected in LR72-50% treated grapes (2 952.58 and 2 764.36 mg L–1, respectively); the lowest were detected in LR72-100% treated grapes (2 172.82 and 2 038.71 mg L–1, respectively).  LR72-50% treatment significantly promoted the synthesis of aspartic acid, serine, arginine, alanine, aminobutyric acid and proline at both severity levels for grapes, the concentrations of all of these amino acids were increased relative to the control concentrations.  The LR72-50%, LR40-100% and LR72-100% treated wines had higher total amino acids concentrations and higher concentrations of some individual amino acids, such as arginine, alanine and serine, than did the control wines.  Of all the amino acids studied, glycine, tyrosine, cysteine, methionine and lysine were not significantly influenced by the timing or severity basal defoliation in grapes and wines.  The present study reveals the effects of the timing and severity of leaf removal on the amino acids profiles of grapes and wines.
Keywords:  amino acid        grape              leaf removal              Sauvignon Blanc        wine
 
  
Received: 07 November 2018   Accepted:
Fund: This work was supported by the Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, China and the earmarked fund for China Agriculture Research System for Grape Industry (CARS-29-zp-6).
Corresponding Authors:  Correspondence ZHANG Zhen-wen, Tel/Fax: +86-29-87092107, E-mail: zhangzhw60@nwsuaf.edu.cn    
About author:  YUE Xiao-feng, E-mail: yuexiaofeng@nwafu.edu.cn; * These authors contributed equally to this study.
Service
E-mail this article amino acid | grape |  leaf removal |  Sauvignon Blanc | wine”. Please open it by linking:https://www.chinaagrisci.com/Jwk_zgnykxen/EN/abstract/abstract12432.shtml" name="neirong"> amino acid | grape |  leaf removal |  Sauvignon Blanc | wine">
Add to citation manager
E-mail Alert
RSS
Articles by authors
YUE Xiao-feng
JU Yan-lun
TANG Zi-zhu
ZHAO Ya-meng
JIAO Xu-liang
ZHANG Zhen-wen

Cite this article: 

YUE Xiao-feng, JU Yan-lun, TANG Zi-zhu, ZHAO Ya-meng, JIAO Xu-liang, ZHANG Zhen-wen. 2019. Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines. Journal of Integrative Agriculture, 18(9): 2052-2062.

Alessandrini M, Battista F, Panighel A, Flamini R, Tomasi D. 2017. Effect of pre-bloom leaf removal on grape aroma composition and wine sensory profile of semillon cultivar. Journal of the Science of Food and Agriculture, 98, 1674–1684.
Arnold R A, Bledsoe A M. 1990. The effect of various leaf removal treatments on the aroma and flavor of Sauvignon blanc wine. American Journal of Enology & Viticulture, 41, 74–83.
Baiano A, De Gianni A, Previtali M A. 2015. Effects of defoliation on quality attributes of Nero di Troia (Vitis vinifera L.) grape and wine. Food Research International, 75, 260–269.
Bell S J, Henschke P A. 2005. Implications of nitrogen nutrition for grapes, fermentation and wine. Australian Journal of Grape & Wine Research, 11, 242–295.
Bledsoe A M, Kliewer W M, Marois J J. 1988. Effects of timing and severity of leaf removal on yield and fruit composition of Sauvignon Blanc grapevines. American Journal of Enology and Viticulture, 39, 49–54.
Crippen D D, Morrison J. 1986. The effects of sun exposure on the compositional development of Cabernet Sauvignon berries. American Journal of Enology and Viticulture, 37, 235–242.
Feng H, Yuan F, Skinkis P A, Qian M C. 2015. Influence of cluster zone leaf removal on pinot noir grape chemical and volatile composition. Food Chemistry, 173, 414–423.
Friedel M, Stoll M, Patz C D, Will F, Dietrich H. 2015. Impact of light exposure on fruit composition of white ‘Riesling’ grape berries (Vitis vinifera L.). Vitis, 54, 107–116.
Garde-Cerdán T, López R, Portu J, González-Arenzana L, López-Alfaro I, Santamaría P. 2014. Study of the effects of proline, phenylalanine, and urea foliar application to tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chemistry, 163, 136–141.
Garde-Cerdán T, Martínez-Gil A M, Lorenzo C, José F L, Pardo F, Salinas M R. 2011. Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chemistry, 124, 106–116.
González-Santamaría R, Ruiz-González R, Nonell S, Garde-Cerdán T, Pérez-álvarez E P. 2018. Influence of foliar riboflavin applications to vineyard on grape amino acid content. Food Chemistry, 240, 601–606.
Gump B H, Zoecklein B W, Fugelsang K C, Whiton R S. 2002. Comparison of analytical methods for prediction of prefermentation nutritional status of grape juice. American Journal of Enology & Viticulture, 53, 325–329.
Gutiérrez-Gamboa G, Carrasco-Quiroz M, Martínez-Gil A M, Pérez-Álvarez E P, Garde-Cerdán T, Moreno-Simunovic Y. 2018. Grape and wine amino acid composition from Carignan noir grapevines growing under rainfed conditions in the Maule Valley, Chile: Effects of location and rootstock. Food Research International, 105, 344–352.
Gutiérrez-Gamboa G, Portu J, Santamaría P, López R, Garde-Cerdán T. 2017. Effects on grape amino acid concentration through foliar application of three different elicitors. Food Research International, 99, 688–692.
Hernándezorte P, And J F C, Ferreira V. 2002. Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. Journal of Agricultural & Food Chemistry, 50, 2891–2899.
Huang Z, Ough C S. 1989. Effect of vineyard locations, varieties, and rootstocks on the juice amino acid composition of several cultivars. American Journal of Enology and Viticulture, 40, 135–139.
Ju Y L, Liu M, Tu T Y, Zhao X F, Yue X F, Zhang J X, Fang Y L, Meng J F. 2018a. Effect of regulated deficit irrigation on fatty acids and their derived volatiles in ‘Cabernet Sauvignon’ grapes and wines of Ningxia, China. Food Chemistry, 245, 667–675.
Ju Y L, Xu G Q , Yue X F, Zhao X F, Tu T Y, Zhang J X, Fang Y L. 2018b. Effects of regulated deficit irrigation on amino acid profiles and their derived volatile compounds in Cabernet Sauvignon (Vitis vinifera L.) grapes and wines. Molecules, 23, 1–13.
Kemp B S, Harrison R, Creasy G L. 2011. Effect of mechanical leaf removal and its timing on flavan-3-ol composition and concentrations in Vitis vinifera L. cv. Pinot Noir wine. Australian Journal of Grape & Wine Research, 17, 270–279.
Kliewer W M. 1970a. Effect of time and severity of defoliation on growth and composition of ‘Thompson Seedless’ grapes. American Journal of Enology & Viticulture, 21, 37–47.
Kliewer W M. 1970b. Free amino acids and other nitrogenous fractions in wine grapes. Journal of Food Science, 35, 17–21.
Kliewer W M, Ough C S. 1970. The effect of leaf area and crop level on the concentration of amino acids and total nitrogen in ‘Thompson Seedless’ grapes. Vitis, 9, 196–206.
Kok D, Bal E. 2018. Leaf removal treatments combined with kaolin particle film technique from different directions of grapevine’s canopy affect the composition of phytochemicals of cv. Muscat Hamburg (V. vinifera L.). Erwerbs-Obstbau, 60, 87–88.
Kozina B, Karoglan M, Herjavec M, Jeromel A, Orli? S. 2008. Influence of basal leaf removal on the chemical composition of Sauvignon Blanc and Riesling wines. Journal of Food, Agriculture and Environment, 6, 28–33.
Lanari V, Lattanzi T, Borghesi L, Silvestroni O, Palliotti A. 2013. Post-veraison mechanical leaf removal delays berry ripening on ‘Sangiovese’ and ‘Montepulciano’ grapevines. Acta Horticulturae, 978, 327–333.
Lee J, Schreiner R P. 2010. Free amino acid profiles from  ‘Pinot noir’ grapes are influenced by vine N-status and sample preparation method. Food Chemistry, 119, 484–489.
Mabrouk H, Sinoquet H. 1998. Indices of light microclimate and canopy structure of grapevine determined by 3D digitising and image analysis, and their relationship to grape quality. Australian Journal of Grape and Wine Research, 4, 2–13.
Maoz I, Rikanati R D, Schlesinger D, Bar E, Gonda I, Levin E, Kaplunov T, Sela N, Lichter A, Lewinsohn E. 2018. Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries. Plant Science, 274, 223–230.
Martin O, Brandriss M C, Schneider G, Bakalinsky A T. 2003. Improved anaerobic use of arginine by Saccharomyces cerevisiae. Applied Environmental Microbiology, 69, 1623–1628.
Moreno D, Valdés E, Uriarte D, Gamero E, Talaverano I, Vilanova M. 2016. Early leaf removal applied in warm climatic conditions: Impact on tempranillo wine volatiles. Food Research International, 98, 50–58.
Oliva J, Garde-Cerdán T, Martínez-Gil A M, Salinas M R, Barba A. 2011. Fungicide effects on ammonium and amino acids of Monastrell grapes. Food Chemistry, 129, 1676–1680.
Osre?ak M, Karoglan M, Kozina, B. 2016. Influence of leaf removal and reflective mulch on phenolic composition and antioxidant activity of Merlot, Teran and Plavac mali wines (Vitis vinifera L.). Scientia Horticulturae, 209, 261–269.
Palliotti A, Panara F, Silvestroni O , Lanari V, Sabbatini P, Howell G S, Gatti M, Poni S. 2013. Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Australian Journal of Grape and Wine Research, 19, 369–377.
Pastore C, Allegro G, Valentini G, Muzzi E, Filippetti I. 2017. Anthocyanin and flavonol composition response to veraison leaf removal on Cabernet Sauvignon, Nero d’Avola, Raboso Piave and Sangiovese Vitis vinifera L. cultivars. Scientia Horticulturae, 218, 147–155.
Pereira G E, Gaudillere J P, Pieri P, Hilbert G, Maucourt M, Deborde C, Moing A, Rolin A D. 2006. Microclimate influence on mineral and metabolic profiles of grape berries. Journal of Agricultural and Food Chemistry, 54, 6765–6775.
Poni S, Casalini L, Bernizzoni F, Civardi S, Intrieri C. 2006. Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. American Journal of Enology and Viticulture, 57, 397–407.
Rapp A, Versini G. 1997. Influence of nitrogen compounds in grapes on aroma compounds of wines. Developments in Food Science, 37, 1659–1694.
Rodriguez-Lovelle B, Gaudillere J. 2002. Carbon and nitrogen partitioning in either fruiting or non-fruiting grapevines: Effects of nitrogen limitation before and after veraison. Australian Journal of Grape and Wine Research, 8, 86–94.
Silvestroni O, Lanari V, Lattanzi T, Palliotti A, Sabbatini P. 2016. Impact of crop control strategies on performance of high-yielding Sangiovese grapevines. American Journal of Enology and Viticulture, 67, 407–418.
Silvestroni O, Lanari V, Lattanzi T, Palliotti A, Vanderweide J, Sabbatini P. 2018. Canopy management strategies to control yield and grape composition of Montepulciano grapevines. Australian Journal of Grape and Wine Research, 25, 30–42.
Tarara J M, Lee J, Spayd S E, Scagel C F. 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. American Journal of Enology & Viticulture, 59, 235–247.
Tardáguila J, Diago M, De Toda F M, Poni S, Vilanova M. 2008. Effects of timing of leaf removal on yield, berry maturity, wine composition and sensory properties of cv. Grenache grown under non irrigated conditions. OENO One, 42, 221–229.
Zhang P, Wu X, Needs S, Liu D, Fuentes S, Howell K. 2017. The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine. Frontiers in Chemistry, 5, 48.
[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[3] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[4] JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2591-2601.
[5] ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2483-2499.
[6] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[7] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[8] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[9] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[10] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[11] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[12] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[13] SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing. The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2470-2482.
[14] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[15] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
No Suggested Reading articles found!