Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (7): 1443-1450    DOI: 10.1016/S2095-3119(19)62669-9
Special Focus: Animal influenza virus Advanced Online Publication | Current Issue | Archive | Adv Search |
Glycosylation of the hemagglutinin protein of H9N2 subtype avian influenza virus influences its replication and virulence in mice
TAN Liu-gang1*, CHEN Zhao-kun2*, MA Xin-xin3, HUANG Qing-hua1, SUN Hai-ji2, ZHANG Fan2, YANG Shao-hua1, XU Chuan-tian1, CUI Ning        
1 Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China
2 College of Life Sciences, Shandong Normal University, Jinan 250014, P.R.China
3 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
N-Linked glycosylation of hemagglutinin (HA) has been demonstrated to regulate the virulence and receptor-binding specificity of avian influenza virus (AIV).  In this study, we characterized the variation trend of naturally isolated H9N2 viruses for the potential N-linked glycosylation sites in HA proteins, and explored any important role of some glycosylation sites.  HA genes of 19 H9N2 subtype AIV strains since 2001 were sequenced and analyzed for the potential glycosylation sites.  The results showed that the viruses varied by losing one potential glycosylation site at residues 200 to 202, and having an additional one at residues 295 to 297 over the past few years.  Further molecular and single mutation analysis revealed that the N200Q mutation lost an N-linked glycosylation at positions 200 to 202 of the HA protein and affected the human-derived receptor affinity.  We further found that this N-linked glycosylation increased viral productivity in the lung of the infected mice.  These findings provide a novel insight on understanding the determinants of host adaption and virulence of H9N2 viruses in mammals.
Keywords:  H9N2 AIV        hemagglutinin        N-linked glycosylation              receptor affinity        mice  
Received: 28 November 2018   Accepted: Online: 24 January 2019  
Fund: The study was supported by the National Key R&D Program of China (2016YFD0500201), the Natural Science Foundation of Shandong Province, China (ZR2017BC094), the earmarked fund for China Agriculture Research System (CARS-41-Z10), and the High-Level Talents and Innovative Team Recruitment Program of the Shandong Academy of Agricultural Sciences, China.
Corresponding Authors:  Correspondence XU Chuan-tian, E-mail: xcttaian2002@163.com; CUI Ning, E-mail: cnydia@163.com   
About author:  * These authors contributed equally to this study.

Cite this article: 

TAN Liu-gang, CHEN Zhao-kun, MA Xin-xin, HUANG Qing-hua, SUN Hai-ji, ZHANG Fan, YANG Shao-hua, XU Chuan-tian, CUI Ning. 2019. Glycosylation of the hemagglutinin protein of H9N2 subtype avian influenza virus influences its replication and virulence in mice. Journal of Integrative Agriculture, 18(7): 1443-1450.

Butt K M, Smith G J, Chen H, Zhang L J, Leung Y H, Xu K M, Lim W, Webster R G, Yuen K Y, Peiris J S, Guan Y. 2005. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. Journal of Clinical Microbiology, 43, 5760–5767.
Chen R A, Lai H Z, Li L, Liu Y P, Pan W L, Zhang W Y, Xu J H, He D S, Tang Z X. 2013. Genetic variation and phylogenetic analysis of hemagglutinin genes of H9 avian influenza viruses isolated in China during 2010–2012. Veterinary Microbiology, 165, 312–318.
Crecelius D M, Deom C M, Schulze I T. 1984. Biological properties of a hemagglutinin mutant of influenza virus selected by host cells. Virology, 139, 164–177.
Deshpande K L, Fried V A, Ando M, Webster R G. 1988. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proceedings of the National Academy of Sciences of the United States of America, 84, 36–40.
Gallagher P, Henneberry J, Wilson I, Sambrook J, Gething M J. 1988. Addition of carbohydrate side chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule. The Journal of Cell Biology, 107, 2059–2073.
Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens, 5, e1000709.
Gu M, Li Q H, Gao R Y, He D C, Xu Y P, Xu H X, Xu L J, Wang X Q, Hu J, Liu X W, Hu S L, Peng D X, Jiao X A, Liu X F. 2017. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs. Veterinary Research, 48, 7.
Gupta R, Brunak S. 2002. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium Biocomputing, 7, 312–322.
Herfst S, Imai M, Kawaoka Y, Fouchier R A. 2014. Avian influenza virus transmission to mammals. Current Topics in Microbiology and Immunology, 385, 137–155.
Hoffmann E, Stech J, Guan Y, Webster R G, Perez D R. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275–2289.
Horimoto T, Kawaoka Y. 2001. Pandemic threat posed by avian influenza A viruses. Clinical Microbiology Reviews, 14, 129–149.
Imai M, Watanabe T, Hatta M, Das S C, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher E A, Neumann G, Kawaoka Y. 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486, 420–428.
Kim J II, Park M S. 2012. N-linked glycosylation in the hemagglutinin of influenza A viruses. Yonsei Medical Journal, 53, 886–893.
Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of Virology, 79, 12058–12064.
Li Z, Watanabe T, Hatta M, Watanabe S, Nanbo A, Ozawa M, Kakugawa S, Shimojima M, Yamada S, Neumann G,   Kawaoka Y. 2009. Mutational analysis of conserved amino acids in the influenza A virus nucleoprotein. Journal of Virology, 83, 4153–4162.
Lin Y P, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A. 2002. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences of the United States of America, 97, 9654–9658.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods, 25, 402–408.
O’Donnell C D, Vogel L, Wright A, Das S R, Wrammert J, Li G M, McCausland M, Zheng N Y, Yewdell J W, Ahmed R, Wilson P C, Subbarao K. 2012. Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of A virus with increased virulence in mice. mBio, 3, e00120–e00131.
Reed L J, Muench H. 1938. Simple method of estimating fifty percent end point. The American Journal of Hygiene, 27, 493–497.
Schulze I T. 1997. Effects of glycosylation on the properties and functions of in?uenza virus hemagglutinin. Journal of Infectious Diseases, 176, S24–S28.
Shen H Q, Yan Z Q, Zeng F G, Liao C T, Zhou Q F, Qin J P, Xie Q M, Bi Y Z, Chen F. 2015. Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013. Journal of Veterinary Science, 16, 317–324.
Sun S, Wang Q, Zhao F, Chen W, Li Z. 2012. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses. PLoS ONE, 7, e32119.
Sun X, Xu X, Liu Q, Liang D, Li C, He Q, Jiang J, Cui Y, Li J, Zheng L, Guo J, Xiong Y,  Yan J. 2013. Evidence of avian-like H9N2 influenza A virus among dogs in Guangxi, China. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 20, 471–475.
Sun Y P, Liu J H. 2015. H9N2 influenza virus in China: A cause of concern. Protein Cell, 6, 18–25
Teng Q, Xu D, Shen W, Liu Q, Rong G, Li X, Yan L, Yang J, Chen H, Yu H, Ma W, Li Z. 2016. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice. Journal of Virology, 90, 9806–9825.
Vigerust D J, Shepherd V L. 2007. Virus glycosylation: Role in virulence and immune interactions. Trends in Microbiology, 15, 211–218.
Wan H,  Perez D R. 2007. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. Journal of Virology, 81, 5181–5191.
Wang W, Lu B, Zhou H, Suguitan Jr A L, Cheng X, Subbarao K, Kemble G, Jin H. 2010. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. Journal of Virology, 84, 6570–6577.
Xia J, Cui J Q, He X, Liu Y Y, Yao K C, Cao S J, Han X F, Huang Y. 2017. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013–2016. PLoS ONE, 12, e0171564.
Zhao D, Liang L, Wang S, Nakao T, Li Y, Liu L, Guan Y, Fukuyama S, Bu Z, Kawaoka Y, Chen H. 2017. Glycosylation of the hemagglutinin protein of H5N1 influenza virus increases its virulence in mice by exacerbating the host immune response. Journal of Virology, 91, e02215–e02230.
Zhao Y, Li S, Zhou Y, Song W, Tang Y, Pang Q, Miao Z. 2015. Phylogenetic analysis of hemagglutinin genes of H9N2 avian influenza viruses isolated from chickens in Shandong, China, between 1998 and 2013. BioMed Research International, 2015, 267520.
Zhou P, Zhu W, Gu H, Fu X, Wang L, Zheng Y, He S, Ke C, Wang H, Yuan Z, Ning Z, Qi W, Li S, Zhang G. 2014. Avian influenza H9N2 seroprevalence among swine farm residents in China. Journal of Medical Virology, 86, 597–600.
[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!