Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (7): 1443-1450    DOI: 10.1016/S2095-3119(19)62669-9
Special Focus: Animal influenza virus Advanced Online Publication | Current Issue | Archive | Adv Search |
Glycosylation of the hemagglutinin protein of H9N2 subtype avian influenza virus influences its replication and virulence in mice
TAN Liu-gang1*, CHEN Zhao-kun2*, MA Xin-xin3, HUANG Qing-hua1, SUN Hai-ji2, ZHANG Fan2, YANG Shao-hua1, XU Chuan-tian1, CUI Ning        
1 Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China
2 College of Life Sciences, Shandong Normal University, Jinan 250014, P.R.China
3 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
N-Linked glycosylation of hemagglutinin (HA) has been demonstrated to regulate the virulence and receptor-binding specificity of avian influenza virus (AIV).  In this study, we characterized the variation trend of naturally isolated H9N2 viruses for the potential N-linked glycosylation sites in HA proteins, and explored any important role of some glycosylation sites.  HA genes of 19 H9N2 subtype AIV strains since 2001 were sequenced and analyzed for the potential glycosylation sites.  The results showed that the viruses varied by losing one potential glycosylation site at residues 200 to 202, and having an additional one at residues 295 to 297 over the past few years.  Further molecular and single mutation analysis revealed that the N200Q mutation lost an N-linked glycosylation at positions 200 to 202 of the HA protein and affected the human-derived receptor affinity.  We further found that this N-linked glycosylation increased viral productivity in the lung of the infected mice.  These findings provide a novel insight on understanding the determinants of host adaption and virulence of H9N2 viruses in mammals.
Keywords:  H9N2 AIV        hemagglutinin        N-linked glycosylation              receptor affinity        mice  
Received: 28 November 2018   Online: 24 January 2019   Accepted:
Fund: The study was supported by the National Key R&D Program of China (2016YFD0500201), the Natural Science Foundation of Shandong Province, China (ZR2017BC094), the earmarked fund for China Agriculture Research System (CARS-41-Z10), and the High-Level Talents and Innovative Team Recruitment Program of the Shandong Academy of Agricultural Sciences, China.
Corresponding Authors:  Correspondence XU Chuan-tian, E-mail: xcttaian2002@163.com; CUI Ning, E-mail: cnydia@163.com   
About author:  * These authors contributed equally to this study.

Cite this article: 

TAN Liu-gang, CHEN Zhao-kun, MA Xin-xin, HUANG Qing-hua, SUN Hai-ji, ZHANG Fan, YANG Shao-hua, XU Chuan-tian, CUI Ning. 2019. Glycosylation of the hemagglutinin protein of H9N2 subtype avian influenza virus influences its replication and virulence in mice. Journal of Integrative Agriculture, 18(7): 1443-1450.

Butt K M, Smith G J, Chen H, Zhang L J, Leung Y H, Xu K M, Lim W, Webster R G, Yuen K Y, Peiris J S, Guan Y. 2005. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. Journal of Clinical Microbiology, 43, 5760–5767.
Chen R A, Lai H Z, Li L, Liu Y P, Pan W L, Zhang W Y, Xu J H, He D S, Tang Z X. 2013. Genetic variation and phylogenetic analysis of hemagglutinin genes of H9 avian influenza viruses isolated in China during 2010–2012. Veterinary Microbiology, 165, 312–318.
Crecelius D M, Deom C M, Schulze I T. 1984. Biological properties of a hemagglutinin mutant of influenza virus selected by host cells. Virology, 139, 164–177.
Deshpande K L, Fried V A, Ando M, Webster R G. 1988. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proceedings of the National Academy of Sciences of the United States of America, 84, 36–40.
Gallagher P, Henneberry J, Wilson I, Sambrook J, Gething M J. 1988. Addition of carbohydrate side chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule. The Journal of Cell Biology, 107, 2059–2073.
Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens, 5, e1000709.
Gu M, Li Q H, Gao R Y, He D C, Xu Y P, Xu H X, Xu L J, Wang X Q, Hu J, Liu X W, Hu S L, Peng D X, Jiao X A, Liu X F. 2017. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs. Veterinary Research, 48, 7.
Gupta R, Brunak S. 2002. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium Biocomputing, 7, 312–322.
Herfst S, Imai M, Kawaoka Y, Fouchier R A. 2014. Avian influenza virus transmission to mammals. Current Topics in Microbiology and Immunology, 385, 137–155.
Hoffmann E, Stech J, Guan Y, Webster R G, Perez D R. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275–2289.
Horimoto T, Kawaoka Y. 2001. Pandemic threat posed by avian influenza A viruses. Clinical Microbiology Reviews, 14, 129–149.
Imai M, Watanabe T, Hatta M, Das S C, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher E A, Neumann G, Kawaoka Y. 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486, 420–428.
Kim J II, Park M S. 2012. N-linked glycosylation in the hemagglutinin of influenza A viruses. Yonsei Medical Journal, 53, 886–893.
Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of Virology, 79, 12058–12064.
Li Z, Watanabe T, Hatta M, Watanabe S, Nanbo A, Ozawa M, Kakugawa S, Shimojima M, Yamada S, Neumann G,   Kawaoka Y. 2009. Mutational analysis of conserved amino acids in the influenza A virus nucleoprotein. Journal of Virology, 83, 4153–4162.
Lin Y P, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A. 2002. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences of the United States of America, 97, 9654–9658.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods, 25, 402–408.
O’Donnell C D, Vogel L, Wright A, Das S R, Wrammert J, Li G M, McCausland M, Zheng N Y, Yewdell J W, Ahmed R, Wilson P C, Subbarao K. 2012. Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of A virus with increased virulence in mice. mBio, 3, e00120–e00131.
Reed L J, Muench H. 1938. Simple method of estimating fifty percent end point. The American Journal of Hygiene, 27, 493–497.
Schulze I T. 1997. Effects of glycosylation on the properties and functions of in?uenza virus hemagglutinin. Journal of Infectious Diseases, 176, S24–S28.
Shen H Q, Yan Z Q, Zeng F G, Liao C T, Zhou Q F, Qin J P, Xie Q M, Bi Y Z, Chen F. 2015. Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013. Journal of Veterinary Science, 16, 317–324.
Sun S, Wang Q, Zhao F, Chen W, Li Z. 2012. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses. PLoS ONE, 7, e32119.
Sun X, Xu X, Liu Q, Liang D, Li C, He Q, Jiang J, Cui Y, Li J, Zheng L, Guo J, Xiong Y,  Yan J. 2013. Evidence of avian-like H9N2 influenza A virus among dogs in Guangxi, China. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 20, 471–475.
Sun Y P, Liu J H. 2015. H9N2 influenza virus in China: A cause of concern. Protein Cell, 6, 18–25
Teng Q, Xu D, Shen W, Liu Q, Rong G, Li X, Yan L, Yang J, Chen H, Yu H, Ma W, Li Z. 2016. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice. Journal of Virology, 90, 9806–9825.
Vigerust D J, Shepherd V L. 2007. Virus glycosylation: Role in virulence and immune interactions. Trends in Microbiology, 15, 211–218.
Wan H,  Perez D R. 2007. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. Journal of Virology, 81, 5181–5191.
Wang W, Lu B, Zhou H, Suguitan Jr A L, Cheng X, Subbarao K, Kemble G, Jin H. 2010. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. Journal of Virology, 84, 6570–6577.
Xia J, Cui J Q, He X, Liu Y Y, Yao K C, Cao S J, Han X F, Huang Y. 2017. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013–2016. PLoS ONE, 12, e0171564.
Zhao D, Liang L, Wang S, Nakao T, Li Y, Liu L, Guan Y, Fukuyama S, Bu Z, Kawaoka Y, Chen H. 2017. Glycosylation of the hemagglutinin protein of H5N1 influenza virus increases its virulence in mice by exacerbating the host immune response. Journal of Virology, 91, e02215–e02230.
Zhao Y, Li S, Zhou Y, Song W, Tang Y, Pang Q, Miao Z. 2015. Phylogenetic analysis of hemagglutinin genes of H9N2 avian influenza viruses isolated from chickens in Shandong, China, between 1998 and 2013. BioMed Research International, 2015, 267520.
Zhou P, Zhu W, Gu H, Fu X, Wang L, Zheng Y, He S, Ke C, Wang H, Yuan Z, Ning Z, Qi W, Li S, Zhang G. 2014. Avian influenza H9N2 seroprevalence among swine farm residents in China. Journal of Medical Virology, 86, 597–600.
[1] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[2] Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2686-2702.
[3] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[4] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[5] Jie Deng, Zi’e Wang, Wenyun Li, Xiaohua Chen, Diqiu Liu. WRKY11 up-regulated dirigent expression to enhance lignin/lignans accumulation in Lilium regale Wilson during response to Fusarium wilt[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2703-2722.
[6] Li Cui, Jianguo Wang, Zhaohui Tang, Zheng Zhang, Sha Yang, Feng Guo, Xinguo Li, Jingjing Meng, Jialei Zhang, Yakov Kuzyakov, Shubo Wan. General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2618-2632.
[7] Yao Zhang, Zelong She, Ruolan He, Shuangyan Yao, Xiang Li, Xiaoguang Liu, Xinming Yin, Jizhen Wei, Mengfang Du, Shiheng An. The Ca2+/CaN/ACC and cAMP/PKA/HK signal pathways are required for PBAN-mediated sex pheromone biosynthesis in Conogethes punctiferalis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2735-2751.
[8] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[9] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[10] Ming Ju, Guiting Li, Qiuzhen Tian, Hengchun Cao, Qin Ma, Yinghui Duan, Hui Guo, Zhanyou Zhang, Yingying Huang, Huili Wang, Haiyang Zhang, Hongmei Miao. Deletion of a 1,049 bp sequence from the 5´ UTR upstream of the SiHEC3 gene induces a seed non-shattering mutation in sesame  [J]. >Journal of Integrative Agriculture, 2024, 23(8): 2589-2604.
[11] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[12] Jia Chen, Xinran Zhang, Ziqi He, Dongwei Xiong, Miao Long. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2507-2524.
[13] Yuhan Zhao, Chen Qian, Yumei Zhang, Xiande Li, Kamiljon T. Akramov. Food security amid the COVID-19 pandemic in Central Asia: Evidence from rural Tajikistan[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2853-2867.
[14] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[15] Xin Zhang, Jingjing Wang, Fuli Tan, Haixiu Gao, Shenggen Fan. The potential impact of increased whole grain consumption among Chinese adults on reducing healthcare costs and carbon footprint[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2842-2852.
No Suggested Reading articles found!