Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (6): 1178-1188    DOI: 10.1016/S2095-3119(18)62108-2
Special Focus: Molecular tools and mechanisms of rice-Xanthomonas oryzae interactions Advanced Online Publication | Current Issue | Archive | Adv Search |
The key residues of OsTFIIAγ5/Xa5 protein captured by the arginine-rich TFB domain of TALEs compromising rice susceptibility and bacterial pathogenicity
TIAN Jing-jing, HUI Shu-gang, SHI Ya-rui, YUAN Meng
National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Xanthomonas bacteria secrete transcription activator-like effector (TALE) proteins into host cells to activate plant disease susceptibility genes to cause disease, and the process is dependent on interaction between bacteria TFB domain of TALEs and host plant basal transcription factor IIA gamma subunit (TFIIAγ). The key domain or residues of plant TFIIAγ and core residues of bacteria TFB domain that are indispensable for TFIIAγ-TALEs interaction in the process of TALE-carrying Xanthomonas invasion plants are unknown. Here, we showed that the third α-helix domain of OsTFIIAγ5/Xa5, especially the 38th, 39th, 40th and 42th residues were key sites for capturing by TALEs of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. The latter segment of Xoo TFB domain harboring seventy-two amino acid residues was vital for TALE specific binding with host plant OsTFIIAγ5/Xa5. Substitution of some residues in this core region of TFB domain completely compromised capacity of TALEs capturing rice OsTFIIAγ5/Xa5. The rich and conserved arginine residues in this core region of TFB domain were responsible for TALE-dependent plant susceptibility gene activation and virulence of Xoo. These results provide a potential strategy for improving resistance to TALE-carrying pathogens in plants by site-specific modification of key residues of host plant TFIIAγ. 
Keywords:  Xanthomonas        transcription activator-like effector        PthXo1        TFB        rice  
Received: 09 May 2018   Accepted:
Fund: This work was supported by the grants from the National Natural Science Foundation of China (31822042 and 31871946) and the Fundamental Research Funds for the Central Universities, China (2662016PY020 and 2662017PY014).
Corresponding Authors:  Correspondence YUAN Meng, Tel: +86- 27-87281812, E-mail: myuan@mail.hzau.edu.cn   
About author:  TIAN Jing-jing, Tel: +86-27-87281812, E-mail: 2017304110109@ webmail.hzau.edu.cn;

Cite this article: 

TIAN Jing-jing, HUI Shu-gang, SHI Ya-rui, YUAN Meng. 2019. The key residues of OsTFIIAγ5/Xa5 protein captured by the arginine-rich TFB domain of TALEs compromising rice susceptibility and bacterial pathogenicity. Journal of Integrative Agriculture, 18(6): 1178-1188.

[1] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[2] GAO Zhi-ping, XU Min-li, ZHANG Hai-zi, LÜ Chuan-gen, CHEN Guo-xiang. Photosynthetic properties of the mid-vein and leaf lamina of field-grown, high-yield hybrid rice during senescence[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1913-1926.
[3] TIAN Chang, SUN Ming-xue, ZHOU Xuan, LI Juan, XIE Gui-xian, YANG Xiang-dong, PENG Jian-wei. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2106-2118.
[4] WANG Pei-hong, WANG Sai, NIE Wen-han, WU Yan, Iftikhar AHMAD, Ayizekeranmu YIMING, HUANG Jin, CHEN Gong-you, ZHU Bo. A transferred regulator that contributes to Xanthomonas oryzae pv. oryzicola oxidative stress adaptation and virulence by regulating the expression of cytochrome bd oxidase genes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1673-1682.
[5] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
[6] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[7] Muhammad Amjad BASHIR, ZHAI Li-mei, WANG Hong-yuan, LIU Jian, Qurat-Ul-Ain RAZA, GENG Yu-cong, Abdur REHIM, LIU Hong-bin. Apparent variations in nitrogen runoff and its uptake in paddy rice under straw incorporation[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3356-3367.
[8] HUANG Li-ying, Li Xiao-xiao, ZHANG Yun-bo, Shah FAHAD, WANG Fei. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3185-3198.
[9] CHEN Zhong-du, LI Feng-bo, XU Chun-chun, JI Long, FENG Jin-fei, FANG Fu-ping. Spatial and temporal changes of paddy rice ecosystem services in China during the period 1980–2014[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3082-3093.
[10] CHEN Yun-feng, XIA Xian-ge, HU Cheng, LIU Dong-hai, QIAO Yan, LI Shuang-lai, FAN Xian-peng. Effects of long-term straw incorporation on nematode community composition and metabolic footprint in a rice–wheat cropping system[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2265-2276.
[11] LIN Fa-ming, LI Shen, WANG Ke, TIAN Hao-ran, GAO Jun-feng, DU Chang-qing. Receptor-like kinase OsASLRK regulates methylglyoxal response and content in rice[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1731-1742.
[12] SHI Min, Krishna P. PAUDEL, CHEN Feng-bo. Mechanization and efficiency in rice production in China[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1996-2008.
[13] ZHANG Jing, ZHANG Yan-yan, SONG Ning-yuan, CHEN Qiu-li, SUN Hong-zheng, PENG Ting, HUANG Song, ZHAO Quan-zhi. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1465-1473.
[14] WU Qiong, WANG Yu-hui, DING Yan-feng, TAO Wei-ke, GAO Shen, LI Quan-xin, LI Wei-wei, LIU Zheng-hui, LI Gang-hua. Effects of different types of slow- and controlled-release fertilizers on rice yield[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1503-1514.
[15] QU Xue, Daizo KOJIMA, Yukinaga NISHIHARA, WU La-ping, Mitsuyoshi ANDO. Can harvest outsourcing services reduce field harvest losses of rice in China?[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1396-1406.
No Suggested Reading articles found!