Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (04): 747-754    DOI: 10.1016/S2095-3119(17)61789-1
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability
DU Jun-bo1, HAN Tian-fu2, GAI Jun-yi3, YONG Tai-wen1, SUN Xin1, WANG Xiao-chun1, YANG Feng1, LIU Jiang1, SHU Kai1, LIU Wei-guo1, YANG Wen-yu1
1 Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture/College of Agronomy, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3 National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants.  The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips.  Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2.  Annually alternative rotation of the adjacent maize- and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles.  Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
Keywords:  maize        soybean        strip intercropping       high production        agricultural sustainability  
Received: 06 April 2017   Accepted:
Fund: 

These studies are supported by the National Natural Science Foundation of China (31401308, 31371555 and 31671445).

Corresponding Authors:  Correspondence DU Jun-bo, Tel: +86-28-86290960, E-mail: junbodu@hotmail.com; YANG Wen-yu, Tel: +86-28-86290960, E-mail: mssiyangwy@sicau.edu.cn   

Cite this article: 

DU Jun-bo, HAN Tian-fu, GAI Jun-yi, YONG Tai-wen, SUN Xin, WANG Xiao-chun, YANG Feng, LIU Jiang, SHU Kai, LIU Wei-guo, YANG Wen-yu . 2018. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 17(04): 747-754.

Brooker R W, Bennett A E, Cong W F, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J, Li L, McKenzie B M, Pakeman R J, Paterson E, Schöb C, Shen J, Squire G, Watson C A, Zhang C, Zhang F, et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206, 107–117.

Cong W F, Hoffland E, Li L, Six J, Sun J H, Bao X G, Zhang F S, Wopke V D W. 2015. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21, 1715–1726.

Cui L, Su B, Yang F, Yang W. 2014. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Scientia Agricultura Sinica, 47, 1489–1501. (in Chinese)

Deng X, Wang X, Yang W, Song C, Wen X, Zang Q, Mao S. 2013. Phosphorus uptake and utilization of maize and interspecies interactions in maize/soybean and maize/sweet potato relay intercropping systems. Acta Agronomica Sinica, 39, 1891–1898. (in Chinese)

Drinkwater L E, Wagoner P, Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262–265.

Feike T, Doluschitz R, Chen Q, Graeff-Hönninger S, Claupein W. 2012. How to overcome the slow death of intercropping in the North China Plain. Sustainability, 4, 2550.

Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature, 478, 337–342.

Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. 2010. Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

Gong W, Qi P, Du J, Sun X, Wu X, Song C, Liu W, Wu Y, Yu X, Yong T, Wang X, Yang F, Yan Y, Yang W. 2014. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE, 9, e98465.

Ijoyah M O and Fanen F T. 2012. Effects of different cropping pattern on performance of maize-soybean mixture in Makurdi, Nigeria. Scientific Journal of Crop Science, 1, 39–47.

Iragavarapu T K, Randall G W. 1996. Border effects on yields in a strip-intercropped soybean, corn, and wheat production system. Journal of Production Agriculture, 9, 101–107.

Knörzer H, Graeff-Hönninger S, Guo B, Wang P, Claupein W. 2009. The rediscovery of intercropping in China: A traditional cropping system for future chinese agriculture - A review. In: Lichtfouse E, ed., Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Springer Netherlands, Dordrecht. pp. 13–44.

Lam H, Remais J, Fung M, Xu L, Sun S S. 2013. Food supply and food safety issues in China. Lancet, 381, 2044–2053.

Lee G A, Crawford G W, Liu L, Sasaki Y, Chen X. 2011. Archaeological soybean (Glycine max) in east Asia: Does size matter? PLoS ONE, 6, e26720.

Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192–11196.

Li L, Sun J, Zhang F, Li X, Rengel Z, Yang S. 2001a. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research, 71, 173–181.

Li L, Sun J, Zhang F, Li X, Yang S, Rengel Z. 2001b. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 71, 123–137.

Li L, Tilman D, Lambers H, Zhang F S. 2014. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytologist, 203, 63–69.

Li X, Mu Y, Cheng Y, Liu X, Nian H. 2013. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae Plantarum, 35, 1113–1119.

Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, Yang C, Yuan X, Yang W. 2016a. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research, 196, 261–267.

Liu W, Zou J, Zhang J, Yang F, Wan Y, Yang W. 2015. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Production Science, 18, 69–75.

Liu X, Rahman T, Song C, Su B, Yang F, Yong T, Wu Y, Zhang C, Yang W. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 200, 38–46.

Liu X, Yong T, Su B, Liu W, Zhou L, Song C, Yang F, Wang X, Yang W. 2014. Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agronomica Sinica, 40, 1629–1638. (in Chinese)

Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F. 2013. Enhanced nitrogen deposition over China. Nature, 494, 459–462.

Lv Y, Francis C, Wu P, Chen X, Zhao X. 2014. Maize-soybean intercropping interactions above and below ground. Crop Science, 54, 914–922.

Monzon J P, Mercau J L, Andrade J F, Caviglia O P, Cerrudo A G, Cirilo A G, Vega C R C, Andrade F H, Calviño P A. 2014. Maize-soybean intensification alternatives for the Pampas. Field Crops Research, 162, 48–59.

Ofori F, Stern W R. 1987. Cereal-legume intercropping systems. Advances in Agronomy, 41, 41–90.

Rahman T, Ye L, Liu X, Iqbal N, Du J, Gao R, Liu W, Yang F, Yang W. 2016. Water use efficiency and water distribution response to different planting patterns in maize-soybean relay strip intercropping systems. Experimental Agriculture, 53, 159–177.

Raji J A. 2007. Intercropping soybean and maize in a derived savanna ecology. African Journal of Biotechnology, 6, 1885–1887.

Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

Verdelli D, Acciaresi H A, Leguizamón E S. 2012. Corn and soybeans in a strip intercropping system: Crop growth rates, radiation interception, and grain yield components. International Journal of Agronomy, 2012, 1–17.

Wang X, Deng X, Pu T, Song C, Yong T, Yang F, Sun X, Liu W, Yan Y, Du J, Liu J, Su K, Yang W. 2017. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 204, 12–22.

Wang X, Yang W, Ren W, Deng X, Zhang Q, Xiang D, Yong T. 2012. Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Journal of Plant Nutrition and Fertilizer, 18, 803–812. (in Chinese)

Wang Z G, Jin X, Bao X G, Li X F, Zhao J H, Sun J H, Christie P, Li L. 2014. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS ONE, 9, e113984.

Wubs A M, Bastiaans L, Bindraban P S. 2005. Input Levels And Intercropping Productivity: Exploration by Simulation. Nota Plant Research International, Wageningen. p. 369.

Yan Y, Gong W, Yang W, Wan Y, Chen X, Chen Z, Wang L. 2010. Seed treatment with uniconazole powder improves soybean seedling growth under shading by corn in relay strip intercropping system. Plant Production Science, 13, 367–374.

Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 155, 245–253.

Yang F, Liao D, Wu X, Gao R, Fan Y, Raza M A, Wang X, Yong T, Liu W, Liu J, Du J, Shu K, Yang W. 2017. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 203, 16–23.

Yang F, Wang X, Liao D, Lu F, Gao R, Liu W, Yong T, Wu X, Du J, Liu J, Yang W. 2015. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agronomy Journal, 107, 296–304.

Yong T, Liu X, Song C, Zhou L, Li X, Yang F, Wang X, Yang W. 2015. Effect of planting patterns on crop yield, nutrients uptake and interspecific competition in maize-soybean relay strip intercropping system. Chinese Journal of Eco-Agriculture, 23, 659–667. (in Chinese)

Zhang F, Chen X, Vitousek P. 2013. Chinese agriculture: An experiment for the world. Nature, 497, 33–35.

Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. 2000. Genetic diversity and disease control in rice. Nature, 406, 718–722.

 
[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[6] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[7] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[8] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[9] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[10] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[11] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[12] Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4195-4210.
[13] Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3803-3818.
[14] Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition[J]. >Journal of Integrative Agriculture, 2025, 24(10): 4048-4062.
[15] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
No Suggested Reading articles found!