Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (05): 1084-1092    DOI: 10.1016/S2095-3119(16)61579-4
Section 3: Quality improvement of super rice Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of QTLs for seed storability in rice under natural aging conditions using two RILs with the same parent Shennong 265
DONG Xiao-yan, FAN Shu-xiu, LIU Jin, WANG Qi, LI Mei-rong, JIANG Xin, LIU Zhen-yu, YIN Ye-chao, WANG Jia-yu

Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Key Laboratory of Northern japonica Rice Genetics and Breeding, Ministry of Education, Shenyang 110866, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Seed storability (SS) is an important trait for agronomic production and germplasm preservation in rice (Oryza sativa L.).  Quantitative trait locus (QTL) for seed storability in three storage periods was identified using two sets of recombinant inbred lines (RILs) derived from the crosses with a common female parent Shennong 265 (SN265).  Ten QTLs for seed storability were detected on chromosomes 1, 2, 3, 4, 6, 8, and 12 in SL-RILs (SN265/Lijiangxingtuanheigui (LTH)), and a total of 12 QTLs were identified on chromosomes 2, 3, 4, 6, 9, and 10 in SH-RILs (SN265/Luhui 99 (LH99)) in different storage periods.  Among these QTLs, five major QTLs were identified in more than one storage period.  The qSS3-1, qSS3-2, qSS12-1, and qSS12-2 were detected in SL-RILs.  Similarly, qSS2-2, qSS2-3, qSS6-2, qSS6-3, qSS6-4, qSS9-1, and qSS9-2 were detected in SH-RILs.  In addition, the maximum phenotypic variation was derived from the qSS6-1 and qSS9-2, explaining 53.58 and 29.09%, respectively, while qSS6-1 was a new stable QTL for seed storability.  These results provide an opportunity for pyramiding and map-based cloning major QTLs for seed storability in rice.
Keywords:   rice      recombinant inbred lines      natural aging      seed storability      quantitative trait locus  
Received: 04 October 2016   Accepted:
Fund: 

This research was supported by the Major Project of Education Department in Liaoning, China (LSNZD201604).

Corresponding Authors:  FAN Shu-xiu, E-mail: sxfan79@126.com; WANG Jia-yu, Tel: +86-24-88487184, Fax: +86-24-88487135, E-mail: ricewjy@126.com    
About author:  DONG Xiao-yan, E-mail: 649744837@qq.com

Cite this article: 

DONG Xiao-yan, FAN Shu-xiu, LIU Jin, WANG Qi, LI Mei-rong, JIANG Xin, LIU Zhen-yu, YIN Ye-chao, WANG Jia-yu. 2017. Identification of QTLs for seed storability in rice under natural aging conditions using two RILs with the same parent Shennong 265. Journal of Integrative Agriculture, 16(05): 1084-1092.

Agacka-Mo?doch M, Nagel M, Doroszewska T, Lewis R S, Borner A. 2015. Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.). Euphytica, 202, 479–486.
Ashikari M, Matsuoka M. 2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science, 11, 344–350.
Bewley J D, Black M. 1994. Seeds: Physiology of Development and Germination. Plenum Press, New York, London. p. 445.
Cheng X X, Geng G H, Liu Z. 2012. QTL analysis of grain storage durability for maize under controlled deterioration conditions using SSH markers. Agricultural Sciences & Technology, 13, 1222–1225.
Clerkx E J M, Blankestijn-De V H, Ruys G J, Groot S P C, Koornneef M. 2004. Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121, 448–461.
Deng Z Y, Tian J C, Chen F, Li W J, Zheng F F, Chen J S, Shi C L, Sun C L, Wang S Y, Zhang Y X. 2015. Genetic dissection on wheat flour quality traits in two related populations. Euphytica, 203, 221–235.
Gan R, Min P, Jiang T W, Guo X C, Zhong X Y. 2005. QTL associated with seed aging in rice. Acta Agronomica Sinica, 31, 183–187. (in Chinese)
Guo L B, Zhu L H, Xu Y B, Zeng D L, Wu P, Qian Q. 2004. QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica, 140, 155–162.
Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L. 2013. Genetic bases of rice grain shape: So many genes, so little known. Trends in Plant Science, 18, 218–226.
Jiang L, Cao Y J, Wang C M. 2003. Detection and analysis of QTL for seed dormancy in rice (Oryza sativa L.) using RIL and CSSL population. Acta Genetica Sinica, 30, 453–458. (in Chinese)
Jiang L, Zhang W W, Zha H Q, Wan J M. 2005. Mapping and analysis of quantitative trait loci controlling seed dormancy in rice. Agricultural Sciences in China, 4, 321–328.
Jiang S K, Zhang X J, Zhang F M, Xu Z J, Chen W F, Li Y H. 2012. Identification and fine mapping of qCTH4, a quantitative trait loci controlling the chlorophyll content from tillering to heading in rice (Oryza sativa L.). Journal of Heredity, 103, 720–726.
Jiang W Z, Lee J H, Jin Y M, Qiao Y L, Piao R H, Jang S M, Woo M O, Kwon S W, Liu X H, PanH Y, Du X L, Koh H J. 2011. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Molecular and Cells, 31, 385–392.
Khush G S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 59, 1–6.
Li H H, Zhang L Y, Wang J K. 2010. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinica, 36, 918–931. (in Chinese)
Li L F, Lin Q Y, Liu S J, Liu X, Wang W Y, Ngo T H, Liu F, Zhao Z G, Jiang L, Wan J M. 2012. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Plant Breeding, 131, 739–743.
Lin Q Y, Jiang Y M, Sun A L, Cao P H, Li L F, Liu X, Tian Y L, He J, Liu S J, Chen L M, Jiang L. 2015a. Fine mapping of qSS-9, a major and stable quantitative trait locus for seed storability in rice (Oryza sativa L.). Plant Breeding, 134, 293–299.
Lin Q Y, Wang W Y, Ren Y K, Jiang Y M, Sun A L, Qian Ying, Zhang Y F, He N Q, Ngo T H, Liu Z, Li L F, Liu L L, Jiang L, Wan J M. 2015b. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22. Breeding Science, 65, 411–419.
Lin S Y, Sasaki T, Yano M.1998. Mapping quantitative trait loci controlling seed dormancy and heading date in rice (Oryza sativa L.) using backcross inbred lines. Theoretical and Applied Genetics, 96, 997–1003.
Lincoln S, Daly M, Lander E. 1993. Constructing Genetic Linkage Maps with MAPMAKER. version 3. Whitehead Institute for Biomedical Research, Cambridge, MA.
Miura K, Lin S Y, Yano M, Nagamine T. 2002. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theoretical and Applied Genetics, 104, 981–986.
McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T. 1997. Report on QTL nomenclature. Rice Genetica Newsletter, 14, 11–13.
Ngo T H, Lin Q Y, Liu L L, Liu X, Liu S J, Wang W Y, Li L F, He N Q, Liu Z, Jiang L, Wan J M. 2014. Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Euphytica, 203, 673–681.
Sasaki K, Fukuta Y, Sato T. 2005. Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Plant Breeding, 124, 361–366.
Song X J, Huang W, Shi M, Zhu M Z, Lin X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39, 623–630.
Tanksley S D. 1993. Mapping polygenes. Annual Review of Genetics, 27, 205–233.
Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X , Cheng Z J, Guo X P. 2006. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theoretical and Applied Genetics, 112, 1258–1270.
Wang J K, Li H H, Zhang L Y, Lei M. 2012. QTL IciMapping V3.2. Insititute of Crop Sciences, Chinese Academy of Agricultural Science. [2014-08-17]. http://www.isbreeding.net
Wang X Q , Yin L Q, Lu Y L, Shen G Z. 2011. Starch viscosity character change during rice cereals storage. Plant Physiology Journal, 47, 601–606. (in Chinese)
Wang Z F, Wang J F, Bao Y M, Wang F H, Zhang H S. 2010. Quantitative trait loci analysis for rice seed vigor during the germination stage. Journal of Zhejiang University (Science B: Biomedicine & Biotechnology), 11, 958–964. (in Chinese)
Wu F X, Zhu Y S, Xie H G, Zhang J F, Xie H A. 2010. Preliminary study on storability of Chinese Micro-core collections of rice. Journal of the Chinese Cereals and Oils Association, 25, 124–128. (in Chinese)
Xing Y Z, Zhang Q F. 2010. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 61, 421–442.
Xue Y, Zhang S Q, Yao Q H, Peng R H, Xiong A S, Li X, Zhu W M, Zhu Y Y, Zha D S. 2008. Identi?cation of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica, 164, 739–744.
Yamauchi M, Winn T. 1996. Rice seed vigor and seeding establishment in anaerobic soil. Crop Science, 36, 680–686.
Yano M, Sasaki T. 1997. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 35, 145–153.
Zhang L, Li X N, Wang W, Yang S L, Li Q, Wang J Y. 2014. Analysis of QTLs for plant type traits in rice (Oryza sativa L.). Acta Agronomica Sinica, 40, 2128–2135. (in Chinese)
Zeng D L, Guo L B, Xu Y B, Yasulumi K, Zhu L H, Qian Q. 2006. QTL analysis of seed storability in rice. Plant Breeding, 125, 57–60.
 
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[3] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

[4] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[5] Fubing Liao, Xiangqian Feng, Ziqiu Li, Danying Wang, Chunmei Xu, Guang Chu, Hengyu Ma, Qing Yao, Song Chen.

A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage [J]. >Journal of Integrative Agriculture, 2024, 23(2): 711-723.

[6] Tingting Zhou, Qian Zhao, Chengzhou Li, Lu Ye, Yanfang Li, Nemat O. Keyhani, Zhen Huang. Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera[J]. >Journal of Integrative Agriculture, 2024, 23(2): 621-638.
[7] ZHAO Chun-hua, ZHANG Na, FAN Xiao-li, JI Jun, SHI Xiao-li, CUI Fa, LING Hong-qing, LI Jun-ming. Dissecting the key genomic regions underlying high yield potential in common wheat variety ‘Kenong 9204’[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2603-2616.
[8] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[9] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[10] PIAO Ri-hua, CHEN Mo-jun, MENG Fan-mei, QI Chun-yan, KOH Hee-Jong, GAO Meng-meng, SONG An-qi, JIN Yong-mei, YAN Yong-feng. Identification and characterization of the chalkiness endosperm gene CHALK-H in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2921-2933.
[11] TIAN Chang, SUN Ming-xue, ZHOU Xuan, LI Juan, XIE Gui-xian, YANG Xiang-dong, PENG Jian-wei. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2106-2118.
[12] GAO Zhi-ping, XU Min-li, ZHANG Hai-zi, LÜ Chuan-gen, CHEN Guo-xiang. Photosynthetic properties of the mid-vein and leaf lamina of field-grown, high-yield hybrid rice during senescence[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1913-1926.
[13] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
[14] LIU Sang-lin, CHENG Yan-bo, MA Qi-bin, LI Mu JIANG Ze, XIA Qiu-ju, NIAN Hai. Fine mapping and genetic analysis of resistance genes, Rsc18, against soybean mosaic virus[J]. >Journal of Integrative Agriculture, 2022, 21(3): 644-653.
[15] LI Kun, YANG Xue, LIU Xiao-gang, HU Xiao-jiao, WU Yu-jin, WANG Qi, MA Fei-qian, LI Shu-qiang, WANG Hong-wu, LIU Zhi-fang, HUANG Chang-ling. QTL analysis of the developmental changes in cell wall components and forage digestibility in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3501-3513.
No Suggested Reading articles found!