Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (06): 1256-1266    DOI: 10.1016/S2095-3119(15)61270-9
Physiology·Biochemistry·Cultivation·Tillage Advanced Online Publication | Current Issue | Archive | Adv Search |
Combining gas exchange and chlorophyll a fluorescence measurements to analyze the photosynthetic activity of drip-irrigated cotton under different soil water deficits
LUO Hong-hai1*, Tsimilli-michael Merope2* , ZHANG Ya-li1, ZHANG Wang-feng1
1 Key Laboratory of Oasis Ecology Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, P.R.China
2 Bioenergetics Laboratory, University of Geneva, Jussy-Geneva CH-1254, Switzerland
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract     Gas exchange and chlorophyll a fluorescence were measured to study the effects of soil water deficit (75, 60 and 45% of field capacity, FC) on the photosynthetic activity of drip-irrigated cotton under field conditions. At light intensities above 1 200 µmol m−2 s−1, leaf net photosynthetic rate (Pn) at 60 and 45% FC was 0.75 and 0.45 times respectively than that of 75% FC. The chlorophyll content, leaf water potential and yield decreased as soil water deficit decreased. Fiber length was significantly lower at 45% FC than at 75% FC. The actual quantum yield of the photosystem II (PSII) primary photochemistry and the photochemical quenching were significantly greater at 60% FC than at 75% FC. The electron transport rate and non-photochemical quenching at 45% FC were 0.91 and 1.29 times than those at 75% FC, respectively. The amplitudes of the K- and L-bands were higher at 45% FC than at 60% FC. As soil water content decreased, active PSII reaction centers per chlorophyll decreased, functional PSII antenna size increased, and energetic connectivity between PSII units decreased. Electron flow from plastoquinol to the PSI end electron acceptors was significantly lower at 45% FC than at 75% FC. Similar to the effect on leaf Pn, water deficit reduced the performance index (PIABS, total) in the dark-adapted state. These results suggest that (i) the effect of mild water deficit on photosystem activity was mainly related to processes between plastoquinol and the PSI end electron acceptors, (ii) PSI end electron acceptors were only affected at moderate water deficit, and (iii) PIABS, total can reliably indicate the effect of water deficit on the energy supply for cotton metabolism.
Keywords:  cotton        drought        JIP-test        modulated fluorescence quenching analysis        photosynthetic rate  
Received: 02 June 2015   Accepted:
Fund: 

This study was supported by the National Natural Science Foundation of China (31401321 and U1203283), the Pairing Program of Shihezi University with Eminent Scholars in Elite Universities (SDJDZ201510) and the Swiss National Science Foundation (200021-116765).

Corresponding Authors:  ZHANG Wang-feng, Tel: +86-993-2057326, Fax: +86-993-2057999, E-mail: Zwf_shzu@163.com    
About author:  LUO Hong-hai, E-mail: luohonghai79@163.com

Cite this article: 

LUO Hong-hai, Tsimilli-michael Merope, ZHANG Ya-li, ZHANG Wang-feng. 2016. Combining gas exchange and chlorophyll a fluorescence measurements to analyze the photosynthetic activity of drip-irrigated cotton under different soil water deficits. Journal of Integrative Agriculture, 15(06): 1256-1266.

Chaves M M. 1991. Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42, 1–16.

Chen S G, Kang Y, Zhang M, Wang X X, Strasser R J, Zhou B, Qiang S. 2015. Differential sensitivity to the potential bioherbicide tenuazonic acid probed by the JIP-test based on fast chlorophyll fluorescence kinetics. Environmental and Experimental Botany, 112, 1–15.

Chen Y H, Hsu B D. 1995. Effects of dehydration on the electron transport of Chlorella. An in vivo fluorescence study. Photosynthesis Research, 46, 295–299.

Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus-theprotective role of polyamines. Biochimica et Biophysica Acta-Bioenergetics, 1767, 272–280.

Demmig-Adams B. 1990. Carotenoids and photoprotection in plant: A role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta-Bioenergetics, 1020, 1–24.

Ennahli S, Earl H J. 2005. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45, 2374–2382.

Genty B, Briantais J M, Da Silva J B V. 1987. Effects of drought on primary photosynthetic processes of cotton leaves. Plant Physiology, 83, 360–364.

Hsiao T C. 1973. Plant responses to water stress. Annual Review of Plant Biology, 24, 519–570.

Jiang C D, Gao H Y, Zou Q. 2001. Enhanced thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover in iron-deficient maize leaves under high irradiance. Photosynthetica, 39, 269–274.

Jiao X L. 2014. The effects of non-sufficient irrigation on boll development and fibre quality of cotton. MSc thesis, Xinjiang Agriculture University, China. (in Chinese)

Kaiser W M. 1987. Effects of water deficit on photosynthetic capacity. Physiologia Plantarum, 71, 142–149.

Kitao M, Lei T T. 2007. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. Plant Biology, 9, 69–76.

Long S P, Humphries S, Falkowski P G. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology, 45, 633–662.

Oxborough K, Baker N R. 1997. An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant, Cell and Environment, 20, 1473–1483.

Quick W P, Chaves M M, Wendler R, David M, Rodrigues M L, Passaharinho J A, Pereira J S, Adcock M D, Leegood R C, Stitt M. 1992. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant, Cell and Environment, 15, 25–35.

Raines C A. 2011. Increasing photosynthetic carbon assimilation in C3 plant to improve crop yield: Current and future strategies. Plant Physiology, 155, 36–42.

Schansker G, Tóth S Z, Strasser R J. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta-Bioenergetics, 1706, 250–261.

Schreiber U. 2004. Pulse-amplitude modulation (PAM) fluorometry and saturation pulse method: An overview. In: Yunus M, Pathre U, Mohanty P, eds., Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor & Francis, London. pp. 279–319.

Stirbet A, Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology (B-Biology), 104, 236–257.

Strasser B J, Strasser R J. 1995. Measuring fast fluorescence transients to address environmental questions: The JIP -test. In: Mathis P, ed., Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dodrecht. pp. 977–980.

Strasser R J, Tsimilli-Michael M, Dangre D, Rai M. 2007. Biophysical phenomics reveals functional building blocks of plants systems biology: A case study for the evaluation of the impact of mycorrhization with piriformospora indica. In: Varma A, Oelmüler R, eds., Advanced Techniques in Soil Microbiology, Soil Biology. Springer-Verlag, Berlin Heidelberg. pp. 319–341.

Strasser R J, Tsimilli-Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee, eds., Chlorophyll a Fluorescence: Asignature of Photosynthesis. Advances in Photosynthesis and Respiration Series. Kluwer Academic Publishers, Rotterdam. pp. 321–362.

Strasser R J, Tsimilli-Michael M, Qiang S, Goltsev V. 2010. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta-Bioenergetics, 1797, 1313–1326.

Tsimilli-Michael M, Strasser R J. 2013. The energy flux theory 35 years later: Formulations and applications. Photosynthesis Research, 117, 289–320.

Zhang Y L, Luo H H, Hu Y Y, Strasser R J, Zhang W F. 2013. Characteristics of photosystem II behavior in cotton (Gossypium hirsutum L.) bract and capsule wall. Journal of Integrative Agriculture, 12, 2056–2064.
[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[2] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[3] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[4] Jianmin Zhou, Yu Fu, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu. Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1152-1166.
[5] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[6] Qiushuang Yao, Huihan Wang, Ze Zhang, Shizhe Qin, Lulu Ma, Xiangyu Chen, Hongyu Wang, Lu Wang, Xin Lü. Estimation model of potassium content in cotton leaves based on hyperspectral information of multi-leaf position[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4225-4241.
[7] Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2255-2269.
[8] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[9] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[10] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[11] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[12] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[13] Dian Jin, Yuting Liu, Zhenyu Liu, Yuyang Dai, Jianing Du, Run He, Tianfan Wu, Yuan Chen, Dehua Chen, Xiang Zhang. Mepiquat chloride increases the Cry1Ac protein content of Bt cotton under high temperature and drought stress by regulating carbon and amino acid metabolism[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4032-4045.
[14] Lei Wu, Yujie Chang, Lanfen Wang, Shumin Wang, Jing Wu. Genome-wide association study dissecting drought resistance-associated loci based on physiological traits in common bean[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3657-3671.
[15] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
No Suggested Reading articles found!