Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Density-dependent regulation of rapeseed root development by long-petiole leaves: Mediated by sucrose partitioning and phytohormones

Xiaoyu Huang, Hongxiang Lou, Xiaoqiang Tan, Anda Guo, Dongli Shao, Jie Zhao, Zhenghua Xu, Jing Wang, Bo Wang, Jie Kuai#, Guangsheng Zhou

MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

 Highlights 

— The functional contribution of long-petiole leaves to root growth diminished with increasing planting density.

— Density-dependent metabolic reprogramming and hormonal regulation was observed under LP treatment.

— At low density (D3), LP enhanced SUSY activity to promote sucrose allocation to roots; at high density (D5), LP stimulated invertase and starch remobilization to sustain basal root growth.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

油菜地上部形态建成和产量形成与根系生长状况密切相关。长柄叶是油菜中出现最早的真叶,在高密度种植条件下,其对根系生长影响机制尚未见报道。因此本试验在高密度直播条件下,设置2个密度(D3: 4.5´105株 hm-2、D5: 7.5×105株 hm-2 )、2个处理(CK: 不剪叶、LP: 剪去一半长柄叶)的大田试验,同时设置盆栽13CO2饲喂试验,对油菜单株一半长柄叶进行13CO2饲喂,以追踪光合同化物分配。结果表明:与CK相比,LP处理降低了单株叶面积和干重,而增加了根冠比。LP处理增加了苗期至薹期叶面积相对生长率(RERLA)D3D5分别增加了56.01%19.87%;而降低了苗期至花期的根表面积相对生长率(RERRSA)和根体积相对生长率(RGRRV)D3密度下分别两年平均降低32.71%和56.98%D5密度下则两年平均下降32.60%和16.61%LP处理增加了根中蔗糖合酶(SUSY)活性,提高蔗糖、淀粉和IAA含量,而降低了蔗糖转运蛋白活性。在D3密度下,LP处理降低花期细胞分裂素(CTK)、脱落酸(ABA)SUT含量,进而抑制侧根生长;此外,LP处理增加了苗期和花期的蔗糖转化酶(INV)活性与蔗糖含量,降低淀粉、SUTIAA含量,进一步阻碍了侧根的生长。在D5密度下,LP处理显著增加了ABA含量,促进主根的伸长。在两个密度下,角果的13C积累量与分配率最高。随着密度增加,营养器官中13C积累量下降,种子与茎秆中分配率增加。而根中13C分配率从14.5%(D3)下降至11.5%(D5),这表明随着密度增加,长柄叶片对根部碳分配的贡献逐渐减少,长柄叶对根系生长的调节作用减弱。D3密度下,减去长柄叶数量能够促进蔗糖向根系转运;而在D5密度下,LP处理促进根系中淀粉再分配,以维持根系基础生长。本研究阐明了长柄叶在不同种植密度条件下调节根部形态发育的关键机制,并为协调高密度直接播种油菜种植系统中的根-冠平衡建立了理论依据。



Abstract  

The morphological establishment and yield formation of rapeseed are fundamentally dependent on root system development. While long-petiole leaves constitute the earliest true leaves in rapeseed, their regulatory effects on root growth under high-density planting conditions remain unexplored. Field experiments were conducted with two planting densities (D3, 4.5×10⁵ plants ha−1; D5, 7.5×10⁵ plants ha−1) and two leaf treatments (CK: no leaf pruning; LP: removal of 50% long-petiole leaves). A continuous 13C-CO2 labeling experiment was implemented in pot-grown plants to track photoassimilate partitioning, with half of the long-petiole leaves receiving 13C-CO2 pulse labeling. The results indicate that compared with CK, LP treatment reduced per-plant leaf area and dry weight while increasing root-to-shoot ratio. From seedling to bolting stages, LP increased relative expansion rate of leaf area (RER LA) by 56.01% (D3) and 19.87% (D5), but decreased relative expansion rates of root surface area (RERRSA) and relative growth rates of root volume (RGR RV) from seedling to flowering stages, with average annual reductions of 32.71% and 56.98% (D3), and 32.60% and 16.61% (D5), respectively. At the seedling stage, LP treatment enhanced root sucrose synthase (SUSY) activity and elevated sucrose, starch, and indole-3-acetic acid (IAA) concentrations, but reduced sucrose transporter (SUT) levels. By the flowering stage, cytokinin (CTK), abscisic acid (ABA), and SUT contents declined under D3 density, coinciding with inhibited lateral root growth. Furthermore, LP treatment increased invertase (INV) activity and sucrose content at both seedling and flowering stages but diminished starch reserves, SUT activity, and IAA levels, collectively impeding lateral root development. Notably, LP treatment significantly elevated ABA content under D5 density, which stimulated taproot elongation. Siliques exhibited the highest 13C assimilation and distribution rates under both planting densities. Elevated density reduced 13C-labeled photoassimilate accumulation in vegetative organs but enhanced their allocation to seeds and stems. Root 13C distribution rates declined from 14.5% (D3) to 11.5% (D5), demonstrating that the contribution of long-petiole leaves to root carbon allocation diminished with increasing plant density. The regulatory influence of long-petiole leaves on root growth diminished with increasing planting density. At D3, reduced long-petiole leaf count enhanced sucrose translocation to roots, whereas at D5, starch remobilization in roots was prioritized to sustain basal root development. This study elucidates key mechanisms by which long-petiole leaves modulate root morphogenesis under varying densities and establishes a theoretical framework for optimizing root-shoot balance in high-density direct-seeded rapeseed cultivation systems.

Keywords:  long-petiole leaves       root architecture       sucrose partitioning       phytohormones       13C labeling  
Online: 15 January 2026  
Fund: 

This study was supported by the China Agriculture Research System of MOF and MARA (CARS–12), the Earmarked Fund of Hubei Province of China (2023HBSTX4-03), and the Key Research and Development Program of Hubei Province of China (2023BBB028).

About author:  Xiaoyu Huang, Email: hxy08033121@163.com; Correspondence Jie Kuai, Email: kuaijie@mail.hzau.edu.cn

Cite this article: 

Xiaoyu Huang, Hongxiang Lou, Xiaoqiang Tan, Anda Guo, Dongli Shao, Jie Zhao, Zhenghua Xu, Jing Wang, Bo Wang, Jie Kuai, Guangsheng Zhou. 2026. Density-dependent regulation of rapeseed root development by long-petiole leaves: Mediated by sucrose partitioning and phytohormones. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.021

Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. 2000. SUT2, a putative sucrose sensor in sieve elements. The Plant Cell, 12, 1153-1164.

Cao Y Y, Duan H, Yang L N, Wang Z Q, Liu L J, Yang J C. 2009. Effect of high temperature during heading and early filling on grain yield and physiological characteristics in indica rice. Acta Agronomica Sinica, 35, 512-521. (in Chinese)

Celenza J L, Grisafi P L, Fink G R. 1995. A pathway for lateral root-formation in Arabidopsis thaliana. Genes & Development, 9, 2131-2142.

Chen S G, Shao B Y, Impens I, Ceulemans R. 1994. Effects of plant canopy structure on light interception and photosynthesis. Journal of Quantitative Spectroscopy and Radiative Transfer, 52, 115-123.

Chen T T, Li G Y, Islam M R, Fu W M, Feng B H, Tao L X, Fu G F. 2019. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC Plant Biology, 19, 525.

Dong G C, Wang Y L, Wang J G, Shan Y H, Ma A J, Yang H J, Zhang C S, Cai H R. 2002. Study on the differences of root traits between various types of varieties in rice (Oryza sativa L.). Acta Agronomica Sinica, 28, 749-755.(in Chinese)

Dong J, Jones R H, Mou P. 2018. Relationships between nutrient heterogeneity, root growth, and hormones: Evidence for interspecific variation. Plants-Basel, 7, 15.

Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. 2016. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology, 170, 1460-1479.

Edwards J, Hertel K. 2011. Canola growth & development. Department of primary industries, State of New South Wales, 13-49.

Gibon Y, Pyl E T, Sulpice R, Lunn J E, Höhne M, Günther M, Stitt M. 2009. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell and Environment, 32, 859-874.

Godt D, Roitsch T. 2006. The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots. Plant Physiology and Biochemistry, 44, 656-665.

Gong X, Liu M L, Zhang L J, Ruan Y Y, Ding R, Ji Y Q, Zhang N, Zhang S B, Farmer J, Wang C. 2015. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiologia Plantarum, 153, 119-136.

Guan X J, Chen J, Chen X M, Xie J, Deng G Q, Hu L Z, Li Y, Qian Y F, Qiu C F, Peng C R. 2022. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. Journal of Integrative Agriculture, 21, 1278-1289.

Gupta A K, Singh J, Kaur N. 2001. Sink development, sucrose metabolising enzymes and carbohydrate status in turnip (Brassica rapa L.). Acta Physiologiae Plantarum, 23, 31-36.

Hendrix D L. 1993. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science, 33, 1306-1311.

Hiyane R, Hiyane S, Tang A C, Boyer J S. 2010. Sucrose feeding reverses shade-induced kernel losses in maize. Annals of Botany106, 395-403.

Hu L Y, Ding Y F. 2019. Crop Cultivation Science, 2, 344-375.

Hu Q, Hua W, Yin Y, Zhang X K, Liu L J, Shi J Q, Zhao Y G, Qin L, Chen C, Wang H Z. 2017. Rapeseed research and production in China. The Crop Journal, 5, 127-135.

Huang X Y, Lou H X, Shao D L, Zhang Z, Bo J, Xiao Y D, Chang Y, Guo A D, Jie Z, Xu Z H, Wang J, Wang B, Jie K, Zhou G S. 2024. Exploring the functions of different leaf types of directlysown rapeseed under high density. Acta Agronomica Sinica, 10 , 2550-2561. (in Chinese)

Kircher S, Schopfer P. 2012. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109, 11217-11221.

Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. 2018. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Scientia Agricultura Sinica, 51, 4625-4632. (in Chinese)

Laskowski M. 2013. Lateral root initiation is a probabilistic event whose frequency is set by fluctuating levels of auxin response. Journal of Experimental Botany, 64, 2609-2617.

Li N, Zhai Z X, Li J M, Wu P B, Duan L S, Li Z H. 2008. Effects of planting density on agricultural characters, root system characters and yield of different maize plant types. Journal of Maize Sciences, 16, 98-102. (in Chinese)

Li T, Cao C L, Tian X H, Hu J J. 2013. Physiological mechanism of increasing lateral roots of Phaseolus coccineus L. under P deficiency. Journal of Plant Nutrition and Fertilizers, 19, 926-933. (in Chinese)

Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. 2018. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Research, 218, 97-105.

Lilley J L S, Gee C W, Sairanen I, Ljung K, Nemhauser J L. 2012. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiology, 160, 2261-2270.

Liu S Q, Song F B, Wang Y. 2007. Correlations between characters of roots and those of aerial parts of maize varieties. Journal of Jilin Agricultural University, 29, 1-6. (in Chinese)

Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund R D, Sauer N. 2004. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology, 134, 684-693.

Mishra B S, Singh M, Aggrawal P, Laxmi A. 2009. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE, 4, e4502.

Nakamura A, Hirota Y, Shigihara M, Watanabe M, Sato A, Tsuji H, Shimada Y. 2023. Molecular and cellular insights into auxin-regulated primary root growth: A comparative study of Arabidopsis and rice. Bioscience, Biotechnology, and Biochemistry, 87, 1145-1154.

Ogawa A, Audo F, Toyofuku K, Kawashima C. 2009. Sucrose metabolism for the development of seminal root in maize seedlings. Plant Production Science, 12, 9-16.

Pozueta-Romero J, Perata P, Akazawa T. 1999. Sucrose-starch conversion in heterotrophic tissues of plants. Critical Reviews in Plant Sciences, 18, 489-525.

Rezaul I M, Feng B H, Chen T T, Fu W M, Zhang C X, Tao L X, Fu G F. 2019. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum, 165, 644-663.

Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675-709.

Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signaling in plants. The Plant Cell, 14, S185-S205.

Rolland F, Winderickx J, Thevelein J M. 2001. Glucose-sensing mechanisms in eukaryotic cells. Trends in Biochemical Sciences 26, 310-317.

Sairanen I, Novak O, Pencik A, Ikeda Y, Jones B, Sandberg G, Ljung K. 2012. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. The Plant Cell, 24, 4907-4916.

Shakya R, Sturm A. 1998. Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Plant Physiology, 118, 1473-1480.

Sheen J, Zhou L, Jang J C. 1999. Sugars as signaling molecules. Current Opinion in Plant Biology, 2, 410-418.

Smeekens S. 1998. Sugar regulation of gene expression in plants. Current Opinion in Plant Biology, 1, 230-234.

Sun X F, Li X J, Jiang W, Zhao M, Gao Z H, Ge J Z, Sun Q, Ding Z S, Zhou B Y. 2023. Integrated management practices for canopy–topsoil improves the grain yield of maize with high planting density. Plants, 12, 2000.

Tang T, Xie H, Wang Y X, Lue B, Liang J S. 2009. The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). Journal of Experimental Botany, 60, 2641-2652.

Vanneste S, De Rybel B, Beemster G T S, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T. 2005. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. The Plant Cell, 17, 3035-3050.

Vaughn M W, Harrington G N, Bush D R. 2002. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proceedings of the National Academy of Sciences of the United States of America, 99, 10876-10880.

Vissenberg K, Claeijs N, Balcerowicz D, Schoenaers S. 2020. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. Journal of Experimental Botany, 71, 2412-2427.

Wang B S, Ma M Y, Lu H G, Meng Q W, Li G, Yang X H. 2015. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynthesis Research, 126, 363-373.

Wang C C, Chen A W, Wang J J, Zhang D X, Tang S, Zhou G S, Hu L Y, Wu J S, Fu T D. 2011. Growth and yield formation of direct-seeding rapeseed under no-tillage cultivation in double rice cropping area in Hubei Province. Acta Agronomica Sinica, 37, 694-702. (in Chinese)

Wang C L, Hai J B, Yang J L, Tian J H, Chen W J, Chen T, Luo H B, Wang H. 2016. Influence of leaf and silique photosynthesis on seeds yield and seeds oil quality of oilseed rape (Brassica napus L.). The European Journal of Agronomy, 74, 112-118.

Wang X B, Hou H P, Zhou B Y, Sun X F, Ma W, Zhao M. 2014. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agronomica Sinica, 40, 2136. (in Chinese)

Wind J, Smeekens S, Hanson J. 2010. Sucrose: Metabolite and signaling molecule. Phytochemistry, 71, 1610-1614.

Wu W, Duncan R W, Ma B L. 2017. Quantification of canola root morphological traits under heat and drought stresses with electrical measurements. Plant and Soil, 415, 229-244.

Wu W, Ma B L, Whalen J K. 2018. Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: Perspectives for stress adaptation from root system architecture. Advances in Agronomy, 151, 87-157.

Xiong S P, Wu K Y, Wang X C, Zhang J, Du P, Wu Y X, Ma X M. 2016. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 49, 2267-2279. (in Chinese)

Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. 2013. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agronomica Sinica, 39, 1445-1451. (in Chinese)

Zhang X L, Zhang Z H, Song H X, Yu J L, Guan C Y. 2016. Differences in carbon accumulation and transport in Brassica napus with different nitrogen use efficiency and its effects on oil formation. Scientia Agricultura Sinica, 49, 3542-3550. (in Chinese)

Zhao J J, Wang W Y, Zhou H K, Wang R L, Zhang P, Wang H C, Pan X L, Xu J. 2017. Manganese toxicity inhibited root growth by disrupting auxin biosynthesis and transport in Arabidopsis. Frontiers in Plant Science, 8, 1-8.

Zhou W L, Qi Z Y, Chen J, Tan Z J, Wang H Y, Wang C Y, Yi Z X. 2020. Rooting ability of rice seedlings increases with higher soluble sugar content from exposure to light. PLoS ONE, 15, e0241060.

[1] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
[2] TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun. Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1952-1967.
[3] ZHANG Ya-jie, XU Jing-nan, CHENG Ya-dan, WANG Chen, LIU Gao-sheng, YANG Jian-chang. The effects of water and nitrogen on the roots and yield of upland and paddy rice[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1363-1374.
[4] WANG Hai-xia, WANG Ming-lun, WANG Xiu-zhong, DING Yu-long . Detection of seven phytohormones in peanut tissues by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. >Journal of Integrative Agriculture, 2020, 19(3): 700-708.
[5] GENG Da-li, LU Li-yuan, YAN Ming-jia, SHEN Xiao-xia, JIANG Li-juan, LI Hai-yan, WANG Li-ping, YAN Yan, XU Ji-di, LI Cui-ying, YU Jian-tao, MA Feng-wang, GUAN Qing-mei. Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1280-1294.
[6] LIU Xuan, LIANG Wei, LI Yu-xing, LI Ming-jun, MA Bai-quan, LIU Chang-hai, MA Feng-wang, LI Cui-ying. Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2264-2271.
[7] WANG Zhi-qin, ZHANG Wei-yang, YANG Jian-chang. Physiological mechanism underlying spikelet degeneration in rice[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1475-1481.
[8] YUAN Si-wei, WU Xue-long, LIU Zhi-hong, LUO Hong-bing , HUANG Rui-zhi. Abiotic Stresses and Phytohormones Regulate Expression of FAD2 Gene in Arabidopsis thaliana[J]. >Journal of Integrative Agriculture, 2012, 12(1): 62-72.
No Suggested Reading articles found!