Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
A zoning-based machine learning framework for accurate soil organic matter prediction across Mollisol and non-Mollisol regions

Xue Li1, 2, Bo Jiang2, Depiao Kong1, Deqiang Zang2, Ya Chen2, Changkun Wang3 , Huanjun Liu1, Chong Luo1#

1 State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 10102, China

2 School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China

3 Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

 Highlights 

Propose a new soil organic matter (SOM) mapping framework that integrates remote sensing zoning, feature selection, and the Random Forest (RF) algorithm.

l High-precision classification of Mollisol and non-Mollisol based on Landsat-8 multi-temporal remote sensing images and environmental covariates.

The optimal feature combinations for SOM mapping differ between Mollisol and non-Mollisol areas.

The mean SOM value in the Mollisol region is slightly higher, while the spatial variability of SOM value is stronger in the non-Mollisol region.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤有机质(SOM)是土壤肥力和生态系统功能的核心指标。然而,在黑土Mollisol)和非黑土共存的地区,由于地形异质性明显以及高维协变量冗余性高,高精度空间制图面临重大挑战。本研究提出了一种“遥感分区-特征选择优化-随机森林(RSZ-FSO-RF)”框架。通过整合2014-2023Landsat-8多时相影像与地形、气候因素,并利用Google Earth EngineGEE)平台,实现了对黑土和非黑土区域的高精度遥感分区(总体精度:92.13%Kappa系数:0.70)。随后,在每个分区内建立了局部随机森林回归模型进行SOM预测,并使用递归特征消除(RFE)方法优化预测变量。结果表明,与基于FAO分区的建模方法相比,RSZ-FSO-RF框架显著提高了预测精度(R²=0.619RMSE=6.849 g kg-1)。进一步的特征优化继续提升了模型表现(R²=0.627RMSE=6.781 g kg-1)。值得注意的是,不同分区的最佳预测变量组合差异显著,非黑土地区的SOM空间变异性普遍高于黑土地区。通过有机结合遥感分区与特征选择,本框架有效减轻了协变量冗余性,同时考虑了局部异质性,显著提高了高分辨率SOM制图的准确性和稳定性。此外,本研究为在复杂地形条件下的土壤资源管理和可持续农业发展提供了科学依据和决策支持。



Abstract  

Soil organic matter (SOM) is a core indicator of soil fertility and ecosystem function. However, in regions where Mollisol and non-Mollisol coexist, high-precision spatial mapping faces significant challenges due to pronounced terrain heterogeneity and redundancy in high-dimensional covariates. This study proposes a “remote sensing zoning-feature selection optimization-random forest (RSZ-FSO-RF)” framework. By integrating Landsat-8 multi-temporal imagery from 2014-2023 with topographic and climatic factors, and leveraging the Google Earth Engine (GEE) platform, it achieves high-precision remote sensing zoning of Mollisol and non-Mollisol areas (overall accuracy: 92.13%, Kappa coefficient: 0.70). Subsequently, local Random Forest (RF) regression models were established within each zone for SOM prediction, with predictive variables optimized using Recursive Feature Elimination (RFE). Results demonstrate that compared to FAO-zone-based modeling, the RSZ-FSO-RF framework significantly enhances prediction accuracy (R2=0.619, RMSE=6.849 g kg-1). And further feature optimization continued to enhance model performance (R2=0.627, RMSE=6.781 g kg-1). Notably, optimal predictor combinations varied significantly across zones, with SOM spatial variability generally higher in non-Mollisol areas than in Mollisol regions. By organically integrating remote sensing zoning with feature selection, this framework effectively mitigates covariate redundancy while accounting for local heterogeneity, significantly enhancing the accuracy and stability of high-resolution SOM mapping. Furthermore, this study provides scientific basis and decision support for soil resource management and sustainable agricultural development under complex topographic conditions.

Keywords:  soil organic matter       remote sensing zoning       feature selection algorithm       random forest algorithm       prediction  
Online: 14 January 2026  
Fund: 

This study was supported by the National Natural Science Foundation of China (42401460) and the National Key R&D Program of China (2021YFD1500100). Sincere thanks to anonymous reviewers and members of the editorial team, for the comments and contributions.

About author:  Xue Li, Mobile: +86-18846763278, E-mail: S231202038@neau.edu.cn; #Correspondence Chong Luo, Mobile: +86-13304807096, E-mail: luochong@iga.ac.cn

Cite this article: 

Xue Li, Bo Jiang, Depiao Kong, Deqiang Zang, Ya Chen, Changkun Wang , Huanjun Liu, Chong Luo. 2026. A zoning-based machine learning framework for accurate soil organic matter prediction across Mollisol and non-Mollisol regions. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.016

Ali Z, Hussain I, Faisal M, Elashkar E E, Gani S, Shehzad M A. 2019. Selection of appropriate time scale with Boruta algorithm for regional drought monitoring using multi-scaler drought index. Tellus (A: Dynamic Meteorology and Oceanography), 71, 1604057.

Alshehri F, Shahfahad, Rahman A. 2024. Optimizing machine learning models with bayesian techniques for prediction of groundwater quality index in Southwest Saudi Arabia. Earth Systems and Environment8, 1417-1436.

Bao N, Wu L, Ye B, Yang K, Zhou W. 2017. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma288, 47-55.

Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing114, 24-31.

Breiman L. 2001. Random forests. Machine Learning45, 5-32.

Broeg T, Don A, Gocht A, Scholten T, Taghizadeh-Mehrjardi R, Erasmi S. 2024. Using local ensemble models and Landsat bare soil composites for large-scale soil organic carbon maps in cropland. Geoderma444, 116850.

Brungard C, Nauman T, Duniway M, Veblen K, Nehring K, White D, Salley S, Anchang J. 2021. Regional ensemble modeling reduces uncertainty for digital soil mapping. Geoderma397, 114998.

Chen R C, Dewi C, Huang S W, Caraka R E. 2020. Selecting critical features for data classification based on machine learning methods. Journal of Big Data7, 52.

Chen S, Arrouays D, Mulder V L, Poggio L, Minasny B, Roudier P, Libohova Z, Lagacherie P, Shi Z, Hannam J. 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma409, 115567.

Chen Y, Ma L, Yu D, Zhang H, Feng K, Wang X, Song J. 2022. Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators135, 108545.

Conforti M, Castrignanò A, Robustelli G, Scarciglia F, Stelluti M, Buttafuoco G. 2015. Laboratory-based Vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. Catena124, 60-67.

Dan W, Nianpeng H, Qing W, Yuliang L, Qiufeng W, Zhiwei X, Jianxing Z. 2016. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China. Pedosphere26, 399-407.

Dou X, Wang X, Liu H, Zhang X, Meng L, Pan Y, Yu Z, Cui Y. 2019. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China. Geoderma356, 113896.

Du R, Xiang Y, Chen J, Lu X, Wu Y, He Y, Xiang R, Zhang Z, Chen Y. 2024. Potential of solar-induced chlorophyll fluorescence (SIF) to access long-term dynamics of soil salinity using OCO-2 satellite data and machine learning method. Geoderma444, 116855.

Franklin R B, Mills A L. 2009. Importance of spatially structured environmental heterogeneity in controlling microbial community composition at small spatial scales in an agricultural field. Soil Biology and Biochemistry41, 1833-1840.

Gao Y, Huang D, Zhang Y, McLaughlin N, Zhang Y, Wang Y, Chen X, Zhang S, Lu Y, Liang A. 2024. Precipitation increment reinforced warming-induced increases in soil mineral-associated and particulate organic matter under agricultural ecosystem. Applied Soil Ecology196, 105301.

Gomes L C, Faria R M, de Souza E, Veloso G V, Schaefer C E G, Fernandes Filho E I. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma340, 337-350.

Grimm R, Behrens T, Märker M, Elsenbeer H. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island-Digital soil mapping using Random Forests analysis. Geoderma146, 102-113.

Guo P T, Li M F, Luo W, Tang Q F, Liu Z W, Lin Z M. 2015. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma237, 49-59.

Guo P T, Wu W, Sheng Q K, Li M F, Liu H B, Wang Z Y. 2013. Prediction of soil organic matter using artificial neural network and topographic indicators in hilly areas. Nutrient Cycling in Agroecosystems95, 333-344.

Guo Z, Adhikari K, Chellasamy M, Greve M B, Owens P R, Greve M H. 2019. Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma340, 303-312.

Gutiérrez-Girón A, Díaz-Pinés E, Rubio A, Gavilán R G. 2015. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma237, 1-8.

He S, Tan S, Shen L, Zhou Q. 2023. Soil organic matter estimation model integrating spectral and profile features. Sensors23, 9868.

Henderson T, Baumgardner M, Franzmeier D, Stott D, Coster D. 1992. High dimensional reflectance analysis of soil organic matter. Soil Science Society of America Journal56, 865-872.

Hengl T, Mendes de Jesus J, Heuvelink G B, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright M N, Geng X, Bauer-Marschallinger B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE12, e0169748.

Hounkpatin K O, Stendahl J, Lundblad M, Karltun E. 2021. Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data. Soil7, 377-398.

Huang H, Yang L, Zhang L, Pu Y, Yang C, Wu Q, Cai Y, Shen F, Zhou C. 2022. A review on digital mapping of soil carbon in cropland: Progress, challenge, and prospect. Environmental Research Letters17, 123004.

John K, Afu S, Isong I, Aki E, Kebonye N, Ayito E, Chapman P, Eyong M, Penížek V. 2021. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. International Journal of Environmental Science and Technology, 18, 1-16.

Jones P G, Thornton P K. 2015. Representative soil profiles for the Harmonized World Soil Database at different spatial resolutions for agricultural modelling applications. Agricultural Systems139, 93-99.

Kebonye N M, Agyeman P C, Biney J K. 2023. Optimized modelling of countrywide soil organic carbon levels via an interpretable decision tree. Smart Agricultural Technology3, 100106.

Keskin H, Grunwald S, Harris W G. 2019. Digital mapping of soil carbon fractions with machine learning. Geoderma339, 40-58.

Ladoni M, Bahrami H A, Alavipanah S K, Norouzi A A. 2010. Estimating soil organic carbon from soil reflectance: A review. Precision Agriculture11, 82-99.

Liang H, Japaer G, Yu T, Zhang L, Chen B, Lin K, Ju T, Zhao Y, Pei T, Aizizi Y. 2024. Comparison of global and zonal modeling strategies-A case study of soil organic matter and C: N ratio mapping in Altay, Xinjiang, China. Ecological Informatics84, 102882.

Liu H, Zhang Y, Zhang B. 2009. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China. Environmental Monitoring and Assessment154, 147-154.

Liu X, Lee Burras C, Kravchenko Y S, Duran A, Huffman T, Morras H, Studdert G, Zhang X, Cruse R M, Yuan X. 2012. Overview of Mollisols in the world: Distribution, land use and management. Canadian Journal of Soil Science92, 383-402.

Luo C, Wang Y, Zhang X, Zhang W, Liu H. 2022a. Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms. Catena211, 106023.

Luo C, Zhang W, Meng X, Yu Y, Zhang X, Liu H. 2024. Mapping the soil organic matter content in Northeast China considering the difference between dry lands and paddy fields. Soil and Tillage Research244, 106270.

Luo C, Zhang X, Meng X, Zhu H, Ni C, Chen M, Liu H. 2022b. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. Catena209, 105842.

Mahmoudzadeh H, Matinfar H R, Taghizadeh-Mehrjardi R, Kerry R. 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional21, e00260.

Meng X, Bao Y, Zhang X, Luo C, Liu H. 2025. A long-term global Mollisols SOC content prediction framework: Integrating prior knowledge, geographical partitioning, and deep learning models with spatio-temporal validation. Remote Sensing of Environment318, 114592.

Minasny B, McBratney A B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma264, 301-311.

Mulder V, De Bruin S, Schaepman M E, Mayr T. 2011. The use of remote sensing in soil and terrain mapping-A review. Geoderma162, 1-19.

Mustafa A, Hu X, Abrar M M, Shah S A A, Nan S, Saeed Q, Kamran M, Naveed M, Conde-Cid M, Hongjun G. 2021. Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping. Applied Soil Ecology165, 103971.

Muthukrishnan R, Rohini R. 2016. LASSO: A feature selection technique in predictive modeling for machine learning. In: 2016 IEEE International Conference on Advances in Computer Applications (ICACA). Institute of Electrical and Electronics Engineers, India. pp. 18-20.

Niu X, Zhang S, Zhang C, Yan P, Wang H, Xu W, Song M, Aurangzeib M. 2024. Key factors influencing the spatial distribution of soil organic carbon and its fractions in Mollisols. Catena, 247, 108522.

Odebiri O, Mutanga O, Odindi J. 2022. Deep learning-based national scale soil organic carbon mapping with Sentinel-3 data. Geoderma411, 115695.

Ou D, Tan K, Lai J, Jia X, Wang X, Chen Y, Li J. 2021. Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction. Geoderma385, 114875.

Peng L, Wu X, Feng C, Gao L, Li Q, Xu J, Li B. 2024. Assessing the potential of multi-source remote sensing data for cropland soil organic matter mapping in hilly and mountainous areas. Catena245, 108312.

Rosero-Vlasova O, Alves D B, Vlassova L, Perez-Cabello F, Lloveria R M. 2017. Modeling soil organic matter (SOM) from satellite data using VISNIR-SWIR spectroscopy and PLS regression with step-down variable selection algorithm: Case study of Campos Amazonicos National Park savanna enclave, Brazil. In: Remote Sensing for AgricultureEcosystemsand Hydrology XIXInternational Society for Optics and Photonics, Ecuador. pp. 166-172.

Schad P. 2015. The international soil classification system WRB, 2014. In: Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer, Germany. pp. 563-571.

Shi Y, Zhao J, Song X, Qin Z, Wu L, Wang H, Tang J. 2021. Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm. PLoS ONE16, e0253385.

Shonk J, Gaultney L, Schulze D, Van Scoyoc G. 1991. Spectroscopic sensing of soil organic matter content. Transactions of the ASAE34, 1978-1984.

Sothe C, Gonsamo A, Arabian J, Snider J. 2022. Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations. Geoderma405, 115402.

Sun W, Zhu H, Guo S. 2015. Soil organic carbon as a function of land use and topography on the Loess Plateau of China. Ecological Engineering83, 249-257.

Visalakshi S, Radha V. 2014. A literature review of feature selection techniques and applications: Review of feature selection in data mining. In: 2014 IEEE International Conference on Computational Intelligence and Computing Research. Institute of Electrical and Electronics Engineers, India. pp. 1-6.

Vohland M, Ludwig M, Thiele-Bruhn S, Ludwig B. 2014. Determination of soil properties with visible to near-and mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma223, 88-96.

Wang B, Liu D, Yang J, Zhu Z, Darboux F, Jiao J, An S. 2021. Effects of forest floor characteristics on soil labile carbon as varied by topography and vegetation type in the Chinese Loess Plateau. Catena196, 104825.

Wang D, Fan H. 2019. Distribution characteristics of gullies with slope gradient in Northeast China. Environmental Monitoring and Assessment191, 1-12.

Wang H, Yang S, Wang Y, Gu Z, Xiong S, Huang X, Sun M, Zhang S, Guo L, Cui J. 2022. Rates and causes of black soil erosion in Northeast China. Catena214, 106250.

Wang H, Zhang X, Wu W, Liu H. 2021. Prediction of soil organic carbon under different land use types using Sentinel-1/-2 data in a small watershed. Remote Sensing13, 1229.

Wang W, Deng X, Yue H. 2024. Black soil conservation will boost China's grain supply and reduce agricultural greenhouse gas emissions in the future. Environmental Impact Assessment Review106, 107482.

Wang X, Wang L, Li S, Wang Z, Zheng M, Song K. 2022. Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model. Geoderma425, 116066.

Weil R R, Magdoff F. 2004. Significance of soil organic matter to soil quality and health. In: Soil Organic Matter in Sustainable Agriculture. CRC Press, USA. pp. 1-43.

van der Westhuizen S, Heuvelink G B, Hofmeyr D P. 2023. Multivariate random forest for digital soil mapping. Geoderma431, 116365.

Xu M, Li X, Cai X, Gai J, Li X, Christie P, Zhang J. 2014. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. European Journal of Soil Biology64, 6-14.

Yang H, Zhang X, Xu M, Shao S, Wang X, Liu W, Wu D, Ma Y, Bao Y, Zhang X. 2020. Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China. Catena184, 104259.

You N, Dong J. 2020. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing161, 109-123.

Zhang J, Okin G S, Zhou B. 2019. Assimilating optical satellite remote sensing images and field data to predict surface indicators in the Western US: Assessing error in satellite predictions based on large geographical datasets with the use of machine learning. Remote Sensing of Environment233, 111382.

Zhang M, Shi W, Ren Y, Wang Z, Ge Y, Guo X, Mao D, Ma Y. 2022. Proportional allocation with soil depth improved mapping soil organic carbon stocks. Soil and Tillage Research224, 105519.

Zhang S, Zhang X, Liu Z, Sun Y, Liu W, Dai L, Fu S. 2014. Spatial heterogeneity of soil organic matter and soil total nitrogen in a Mollisol watershed of Northeast China. Environmental Earth Sciences72, 275-288.

Zhang X, Chen S, Xue J, Wang N, Xiao Y, Chen Q, Hong Y, Zhou Y, Teng H, Hu B. 2023. Improving model parsimony and accuracy by modified greedy feature selection in digital soil mapping. Geoderma432, 116383.

Zhang Y, Wei L, Lu Q, Zhong Y, Yuan Z, Wang Z, Li Z, Yang Y. 2023. Mapping soil available copper content in the mine tailings pond with combined simulated annealing deep neural network and UAV hyperspectral images. Environmental Pollution320, 120962.

Zhou Y, Biswas A, Ma Z, Lu Y, Chen Q, Shi Z. 2016. Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain. Geoderma271, 71-79.

Zhou Y, Hartemink A E, Shi Z, Liang Z, Lu Y. 2019. Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment647, 1230-1238.

Zhu M, Feng Q, Qin Y, Cao J, Zhang M, Liu W, Deo R C, Zhang C, Li R, Li B. 2019. The role of topography in shaping the spatial patterns of soil organic carbon. Catena176, 296-305. 

[1] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[2] Jianqi Zeng, Dehui Zhao, Li Yang, Yufeng Yang, Dan Liu, Yubing Tian, Fengju Wang, Shuanghe Cao, Xianchun Xia, Zhonghu He, Yong Zhang. Fine mapping and candidate gene analysis of a major QTL for grain length on chromosome 5BS in bread wheat[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2465-2474.
[3] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
[4] Jie Song, Dongsheng Yu, Siwei Wang, Yanhe Zhao, Xin Wang, Lixia Ma, Jiangang Li. Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales[J]. >Journal of Integrative Agriculture, 2024, 23(4): 1393-1408.
[5] LI Qian-chuan, XU Shi-wei, ZHUANG Jia-yu, LIU Jia-jia, ZHOU Yi, ZHANG Ze-xi. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1909-1927.
[6] BAI Jin-shun, ZHANG Shui-qing, HUANG Shao-min, XU Xin-peng, ZHAO Shi-cheng, QIU Shao-jun, HE Ping, ZHOU Wei. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3517-3534.
[7] DONG Li-feng, JIA Peng, LI Bin-chang, WANG Bei, YANG Chun-lei, LIU Zhi-hao, DIAO Qi-yu. Quantification and prediction of enteric methane emissions from Chinese lactating Holstein dairy cows fed diets with different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios[J]. >Journal of Integrative Agriculture, 2022, 21(3): 797-811.
[8] CHEN Bing-yu, LI Qi-zhai, HU Hui, MENG Shi, Faisal SHAH, WANG Qiang, LIU Hong-zhi . An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2340-2351.
[9] HOU Hai-peng, MA Wei, Mehmood Ali NOOR, TANG Li-yuan, LI Cong-feng, DING Zai-song, ZHAO Ming. Quantitative design of yield components to simulate yield formation for maize in China[J]. >Journal of Integrative Agriculture, 2020, 19(3): 668-679.
[10] WANG Liang, YANG Xin-lei, CUI Shun-li, WANG Ji-hong, HOU Ming-yu, MU Guo-jun, LI Zi-chao, LIU Li-feng. Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2383-2393.
[11] ZHANG Wen-wen, WANG Chong, XUE Rui, WANG Li-jie. Effects of salinity on the soil microbial community and soil fertility[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1360-1368.
[12] LI Mei-zhen, XIAO Hua-mei, HE Kang, LI Fei. Progress and prospects of noncoding RNAs in insects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 729-747.
[13] PAN Xing-lu, DONG Feng-shou, WU Xiao-hu, XU Jun, LIU Xin-gang, ZHENG Yong-quan . Progress of the discovery, application, and control technologies of chemical pesticides in China[J]. >Journal of Integrative Agriculture, 2019, 18(4): 840-853.
[14] Gniewko Niedbała. Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield[J]. >Journal of Integrative Agriculture, 2019, 18(1): 54-61.
[15] QIAN Kun, LI Deng-hui, LIN Run-mao , SHI Qian-qian, MAO Zhen-chuan, YANG Yu-hong, FENG Dong-xin, XIE Bing-yan . Rediscovery and analysis of Phytophthora carbohydrate esterase (CE) genes revealing their evolutionary diversity[J]. >Journal of Integrative Agriculture, 2018, 17(04): 878-891.
No Suggested Reading articles found!