Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Involvement of brassinosteroids in mediating phosphorus acquisition and utilization of rice

Shiyan Peng1, 2, Jiangyao Fu1, 2, Kuanyu Zhu1, 2, Weiyang Zhang1, 2, Zhiqin Wang1, Junfei Gu1, 2, Jianhua Zhang3, 4, Jianchang Yang1, 2#  

1 Jiangsu Key Laboratory of Crop Genetics and Physiology /Agricultural College, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

3 Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China

4 The State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China

 Highlights 

l Brassinosteroids (BRs) enhance the activities of enzymes involved in phosphorus (P) acquisition and utilization.

l BRs up-regulate the expression of genes related to P uptake and transport.

l BRs promote P remobilization from vegetative tissues to the grain during maturity.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

油菜素甾醇(BRs)是一类新型植物激素,在调节植物生长发育及应答生物与非生物胁迫中具有重要作用。然而,关于BRs是否以及如何调控水稻对磷(P)的吸收与利用?知之甚少。于2019-2024年,本研究以水稻强耐低磷品种(SVs)和弱耐低磷品种(WVs)为材料,通过水培与大田试验,对此问题进行了探究。结果显示,在低磷条件下,各生育期SVs根系与叶片中BRs含量包括24-表油菜素内酯(24-EBL)28-高油菜素内酯(28-HBL )含量均显著高于WVs24-EBL28-HBL含量与反映水稻磷吸收利用的关键指标,如磷含量、酸性磷酸酶质子泵ATP酶活性、磷转运率呈极显著正相关;较高的24-EBL28-HBL含量促使SVs获得较高的磷积累量、磷收获指数、磷籽粒生产效率和产量。相比之下,其他内源植物激素,如细胞分裂素(玉米素+玉米素核苷)吲哚-3-乙酸、赤霉素(GA1+GA4)、脱落酸、茉莉酸和乙烯水平在SVsWVs之间无显著差异,且低磷条件下与水稻磷吸收利用指标显著相关。外源施用24-EBL能显著提升水稻植株BRs水平,改善水稻磷吸收利用相关参数,上调磷吸收与转运基因表达,并提高磷转运率、磷籽粒生产效率和产量;施用BRs合成抑制剂芸苔素唑的结果则相反。这些发现揭示了BRs调控水稻磷吸收利用的作用机制,为通过提升水稻内源BRs水平协同提高产量与磷利用效率的育种栽培提供了新策略。



Abstract  

Brassinosteroids (BRs) are a novel class of plant hormones that play important roles in regulating plant growth and development, as well as in responding to biotic and abiotic stresses. However, little is known whether and how BRs mediate phosphorus (P) acquisition and utilization in rice. This study investigated the question. Both hydroponics and field experiments were conducted in 2019-2024 by using rice varieties either with strong tolerance to low P (SVs) or with weak tolerance to low P (WVs). The results showed that the SVs had higher levels of BRs including 24-epibrassinolide (24-EBL) and 28-homobrassinolide (28-HBL) in both roots and leaves than WVs at each growth stage and under a low P (LP) condition. Levels of 24-EBL and 28-HBL were very significantly and positively correlated with the parameters reflecting P acquisition and utilization, such as P content, activities of acid phosphatase and proton-pumping adenosine triphosphatase, and P remobilization, leading to more P accumulation and higher P harvest index, internal P use efficiency, and grain yield for SVs. In contrast, levels of other phytohormones including cytokinins (zeatin+zeatin riboside), indole-3-acetic acid, gibberellic acids (GA1+GA4), abscisic acid, jasmonic acid, and ethylene were neither markedly different between SVs and WVs nor significantly correlated with the parameters reflecting P acquisition and utilization under LP. Applying 24-EBL prominently increased BRs levels in plants, improved the parameters reflecting P acquisition and utilization, up-regulated expression of the genes involved in P uptake and transport, and increased P remobilization, internal P use efficiency, and grain yield, whereas applying brassinazole, an inhibitor of BRs synthesis, exhibited opposite effects. These findings shed light on the role and mechanism of BRs in mediating P acquisition and utilization, and provide a strategy for synergistically improving grain yield and P use efficiency through increasing BRs levels in the plants in rice breeding and crop management.

Keywords:  rice       brassinosteroids        grain yield        phosphorus acquisition and utilization        strong tolerance to low phosphorus        weak tolerance to low phosphorus  
Online: 14 January 2026  
Fund: 

This study was supported by the National Natural Science Foundation of China (32272198, 32071943), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD-2020-01), and by the Government Funding to the Chinese University of Hong Kong State Key Laboratory of Agrobiotechnology via Innovation and Technology Commission (2022/23-2023/24).

About author:  Shiyan Peng, Tel/Fax: +86-514-87979317, E-mail: mz120241483@stu.yzu.edu.cn; #Correspondence Jianchang Yang, Tel/Fax: +86-514-87324276, E-mail: jcyang@yzu.edu.cn

Cite this article: 

Shiyan Peng, Jiangyao Fu, Kuanyu Zhu, Weiyang Zhang, Zhiqin Wang, Junfei Gu, Jianhua Zhang, Jianchang Yang. 2026. Involvement of brassinosteroids in mediating phosphorus acquisition and utilization of rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.015

Bajguz A, Tretyn A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.

Chang M M, Gu M, Xia Y W, Dai X L, Dai C R, Zhang J, Wang S C, Qu H Y, Yamaji N, Ma J F, Xu G H. 2019. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiology, 179, 656-670.

Che J, Yamaji N, Miyaji T, Mitani-Ueno N, Kato Y, Shen R F, Ma J F. 2020. Node-localized transporters of phosphorus essential for seed development in rice. Plant and Cell Physiology, 61, 1387-1398.

Chen C R, Tang C X, Hu H Q. 2011. Soil phosphorus availability. In: ASEC (Agricultural Science Editorial Committee), ed., 10000 Scientific Problems. The Volume of 10000 Scientific Problems, Agricultural Science. Science Press, Beijing. pp. 321-324. (in Chinese)

Chen J, Fei K Q, Zhang W Y, Wang Z Q, Zhang J H, Yang J C. 2021. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines. The Crop Journal, 9, 109-119.

Chen T T, Xu G W, Wang Z Q, Zhang H, Yang J C, Zhang J H. 2016. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics, 16, 102-121.

Chiou T J. 2020. The diverse roles of rice pho1 in phosphate transport: From root to node to grain. Plant and Cell Physiology, 61, 1384-1386.

Choe S. 2004. Brassinosteroid biosynthesis and metabolism. 2004. In: Davies P J, ed., Plant Hormones, Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishes, Dordrecht/Boston/London. pp. 156-178.

Clouse S D. 2004. Brassinosteroid signal transduction and action. In: Davies P J, ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishes, Dordrecht/Boston/London. pp. 413-436. 

Deng S, Lu L, Li J , Du Z, Liu T, Li W, Xu F, Shi L, Shou H, Wang C. 2020. Purple acid phosphatase 10c (OsPAP10c) encodes a major acid phosphatase and regulates the plant growth under phosphate deficient condition in rice. Journal of Experimental Botany, 71, 4321-4332.

Deng Y P, Men C B, Qiao S F, Wang W J, Gu J F, Liu L J, Zhang Z J, Zhang H, Wang Z Q, Yang J C. 2020. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. The Crop Journal, 8, 534-547. 

Deng Y P, Qiao S F, Wang W L, Zhang W Y, Gu J F, Liu L J, Zhang H, Wang Z Q, Yang J C. 2021. Tolerance to low phosphorus was enhanced by an alternate wetting and drying regime in rice. Food and Energy Security, 10, e294.

Ding J, Mao L J, Yuan B F, Feng Y Q. 2013. A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction. Plant Methods, 9, 13.

FAOSTAT (Food and Agriculture Organization Corporate Statistical Database). 2023. FAO Statistical databases, food and agriculture organization (FAO) of the United Nations, Rome. [2025-8-15]. http://www.fao.org.

Gong H Q, Xiang Y, Wu J C, Luo L C, Chen X H, Jiao X Q, Chen C. 2024. Integrating phosphorus management and cropping technology for sustainable maize production. Journal of Integrative Agriculture, 23, 1369-1380.

Gu J F, Peng X L, Guo S W, Lu J W, Shi X J, Sun Y X, Yang J C. 2025. Innovation and implement of green technology in rice production to increase yield and resource use efficiency. Frontiers of Agricultural Science and Engineering, 12, 478-492.

Herrera-Estrella L, Lopez-Arredondo D. 2016. Phosphorus: The underrated element for feeding the world. Trends in Plant Science, 21, 461-463.

Hu B, Chu C C. 2011. Phosphate starvation signaling in rice. Plant Signaling & Behavior, 6, 927-929.

Jiang Y, Tao W L, Zhang W Y, Wang Z Q, Yang J C. 2024. Wetting alternating with partial drying during grain filling increases lysine biosynthesis in inferior rice grain. The Crop Journal, 12, 262-270.

Julia C, Wissuwa M, Kretzschmar T, Jeong K, Rose T. 2016. Phosphorus uptake, partitioning and redistribution during grain filling in rice. Annals of Botany, 118, 1151-1162.

Karandashov V, Bucher M. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10, 22-29.

Kuo S, Huang B, Bembenek R. 2005. Effects of long-term phosphorus fertilization and winter cover cropping on soil phosphorus transformations in less weathered soil. Biology and Fertility of Soils, 41, 116-123.

Li Y Y, Xu G W, Li J F, Guo J R, Wang Z Q, Yang J C. 2017. Tolerance to low phosphorus and its agronomic and physiological characteristics of rice cultivars. Chinese Journal of Rice Science, 32, 51-56. (in Chinese)

Liang C Y, Wang J X, Zhao J, Tian J, Liao H. 2014. Control of phosphate homeostasis through gene regulation in crops. Current Opinion in Plant Biology, 21, 59-66.

Liang Z M, Cao X D, Gao R, Guo N, Tang Y Y, Nangia V, Liu Y. 2025. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes. Journal of Integrative Agriculture, 24, 497-516.

Liu X, Yang Y L, Lin W H, Tong J H, Huang Z G, Xiao L T. 2010. Determination of both jasmonic acid and methyl jasmonate in plant samples by liquid chromatography tandem mass spectrometry. Chinese Science Bulletin, 55, 2231–2235. 

Liu Y, Liu W W, Li L, Francis F, Wang X F. 2023. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection. Journal of Integrative Agriculture, 22, 1750-1762.

Livak J K, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2△△CT method. Methods, 25, 402–408.

Ma B, Zhang L, Gao Q F, Wang J M, Li X Y, Wang H, Liu Y, Lin H, Liu J Y, Wang X, Li Q, Deng Y W, Tang W H, Luan S, He Z H. 2021. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nature Genetics, 53, 906-915.

Mae T, Ohira K. 1981. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell and Physiology, 22, 1067-1074.

Martinez C, Espinosa-Ruiz A, de Lucas M, Bernardo-Garcia S, Franco-Zorrilla J M, Prat S. 2018. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO Journal, 37, e99552.

Pan X, Welti R, Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocls, 5, 986-992.

Poirier Y, Bucher M A. 2002. Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis Book, 1, e0024.

Prerostova S, Kramna B, Dobrev P I, Gaudinova A, Marsik P, Fialad R, Knirsch V, Vanek T, Kuresova G, Vankova R. 2018. Organ–specific hormonal cross-talk in phosphate deficiency. Environmental and Experimental Botany, 153, 198-208.

Raghothama K G. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.

Shi H T, Lou C, Wang J F, Dong D Q, Yang L F, Li G Z, Tian Z Q, Han Q X, Wang, Kang G Z. 2025. Identification of Pi-efficient elite allele of the TaPHT1;6 gene and development of its functional marker in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 24, 1646-1655.

Shi J C, Zhao B Y, Zheng S, Zhang X W, Wang X L, Dong W T, Xie Q J, Wang G, Xiao Y P, Chen F, Yu N, Wang E T. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 184, 5527-5540.

Sun Z W, Qiao S F, Xu Y M, Ji D L, Zhang W Y, Gu J F, Zhu K Y, Wang Z Q, Zhang J H, Yang J C. 2024. Agronomic and physiological performance of the indica rice varieties differing in tolerance to low phosphorus. Agronomy, 14, 41.

Vance C P, Uhde S C, Allan D L. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.

Wang P, Limpens E, Yao R F. 2022. Orchestrating plant direct and indirect phosphate uptake pathways. Trends in Plant Science, 27, 319-321.

Weyers J D B, Paterson N W. 2001. Plant hormones and the control of physiological processes. New Phytologist, 152, 375-407.

Xing J P, Wang Y B, Yao Q Q, Zhang Y S, Zhang M C, Li Z H. 2022. Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize (Zea mays L.). The Crop Journal, 10, 166-176.

Xu F S, Wu P. 2011. Efficient utilization of crop nutrients. In: ASEC (Agricultural Science Editorial Committee), ed., 10000 Scientific Problems. The Volume of 10000 Scientific Problems, Agricultural Science. Science Press, Beijing. 325-328. (in Chinese)

Xu L, Wang F, Li R L, Deng M J, Fu M L, Teng H Y, Yi K K. 2020. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice. Journal of Integrative Plant Biology, 62, 1017-1033.

Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. 2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist, 197, 139-150.

Yang J C, Miao W Q, Chen J. 2021. Roles of jasmonates and brassinosteroids in rice responses to high temperature stress-A review. The Crop Journal, 9, 977-985.

Yang J C, Zhang J H. 2023. Simultaneously improving grain yield and water and nutrient use efficiencies by enhancing the harvest index in rice. Crop and Environment, 2, 157-164.

Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P. 2006. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 57, 149-160.

Yuan L Y, Zhu S D, Shu S, Sun J, Guo S R. 2015. Regulation of 2,4-epibrassinolide on mineral nutrient uptake and ion distribution in Ca(NO3)2 stressed cucumber plants. Journal of Plant Physiology, 188, 29-36.

Zhang H Y, Yang Y M, Sun C Y, LiuX Q, Lv L L, Hu Z B, Yu D Y, Zhang D. 2020. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean. Plant, Cell & Environment, 43, 2080-2094.

Zhang R P, Liu G, Wu N, Gu M, Zeng H, Zhu Y, Xu G. 2011. Adaptation of plasma membrane H+-ATPase and H+ pump to P deficiency in rice roots. Plant and Soil, 349, 3-11.

Zhang W Y, Huang H H, Zhou Y J, Zhu K Y, Wu Y F, Xu Y J, Wang W L, Zhang H, Gu J F, Xiong F, Wang Z Q, Liu L J, Yang J C. 2023. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. Plant, Cell & Environment, 46, 1340-1362.

Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. 2019a. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biology, 19, 409.

Zhang W Y, Wu M Y, Zhong X H, Liu Y, Yang X X, Cai W, Zhu K Y, Zhang H, Gu J F, Wang Z Q, Liu L J, Zhang J H, Yang J C. 2024. Involvement of brassinosteroids and abscisic acid in spikelet degeneration in rice under soil drying during meiosis. Journal of Experimental Botany, 75, 1580-1600.

Zhang W Y, Zhu K Y, Wang Z Q, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. 2019b. Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative of Plant Biology, 61, 943-963.

Zhang Y J, Zhang W, Wu M, Liu G S, Zhang Z J, Yang J C. 2021. Effects of irrigation schedules and phosphorus fertilizer rates on grain yield and quality of upland rice and paddy rice. Environmental and Experimental Botany, 186, 104465.

Zhu X F, Zhu C Q, Zhao X S, Zheng S J, Shen R F. 2016. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa L.) by regulating cell-wall pectin and enhancing phosphate translocation to shoots. Annals of Botany, 118, 645-653.

[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[3] Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols[J]. >Journal of Integrative Agriculture, 2026, 25(2): 493-500.
[4] Yunji Xu, Xuelian Weng, Shupeng Tang, Xiufeng Jiang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Alternate wetting and moderate drying irrigation improves rice cooking and eating quality by optimizing lipid and fatty acid synthesis in grains[J]. >Journal of Integrative Agriculture, 2026, 25(1): 68-80.
[5] Chao Zhang, Shanshan Li, Fan Yang, Ruifa Hu.

Does the adoption of direct-seeded rice affect pesticide use?  Evidence from China [J]. >Journal of Integrative Agriculture, 2026, 25(1): 366-376.

[6] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[7] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[8] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[9] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[10] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[11] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3004-3023.
[12] Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S. M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood. Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2525-2539.
[13] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[14] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2540-2557.
[15] Tongming Wang, Kai Zhou, Bingxian Yang, Benoit Lefebvre, Guanghua He. OsEXO70L2 is required for large lateral root formation and arbuscular mycorrhiza establishment in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2035-2045.
No Suggested Reading articles found!