Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Nano-biochar amendment reduces reactive gaseous nitrogen losses and improves grain yield in alternate wetting and drying paddy fields

Yidi Sun1*#, Tao Zong1*, Yuhao Zhou1, Jianchang Yang2#, Xiaoping Xin3, Weiyang Zhang2, Wenhao Fang1, Tong Shen1 

1 College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2 College of Agriculture, Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou 225009, China

3 School of Natural Resources, Division of Plant Sciences and Technology, University of Missouri, MO, 6521, USA

 Highlights 

•  Nano-biochar has better physicochemical properties than biochar.

•  Nano-biochar improves rice yield under alternate wetting and drying irrigation.

•  Nano-biochar reduces gaseous nitrogen losses by enhancing soil nitrogen retention.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

传统生物炭在降低氮排放与提升作物产量方面表现出一定潜力,但其效果存在局限,且可能促进氨(NH3)挥发。纳米生物炭因具有更高的表面能而备受关注,然而其在干湿交替灌溉(AWD)稻田系统中的减排增产效应尚不明确。为此,本研究于2023–2024年开展田间试验,设置六个处理:淹灌&0 t·ha-1传统生物炭ICFNB0、干湿交替灌溉&0 t·ha-1传统生物炭IAWDNB0、干湿交替灌溉&20 t·ha-1传统生物炭IAWDB20、干湿交替灌溉&5 t·ha-1纳米生物炭IAWDNB5、干湿交替灌溉&10 t·ha-1纳米生物炭IAWDNB10和干湿交替灌溉&20 t·ha-1纳米生物炭IAWDNB20,旨在探究纳米生物AWD稻田活性气态氮损失、田面水氮素、土壤环境、氮素吸收、产量及氮相关全球增温潜势的影响。结果表明,ICFNB0IAWDNB0NH3挥发和稻米产量上无显著差异,但干湿交替灌溉使氧化亚氮(N2O)排放增加了41.71-53.25%。与不施生物炭相比,纳米生物炭增加了土壤矿含量,同时降低了田面水NH₄⁺-N浓度,从而使AWD稻田的NH3挥发、N2O排放、活性气态氮损失和全球增温潜势分别降低5.92-34.41%9.95-25.49%6.37-33.39%12.20-26.11%。与IAWDB20处理相比,IAWDNB20处理使NH3挥发、N2O排放、活性气态氮损失和全球增温潜势分别降低12.97-13.45%9.47-17.26%13.69%9.95-17.89%IAWDNB10处理在2023年与IAWDB20无显著差异,但在2024年显著降低了N2O排放,使全球增温潜势降低了7.81%。纳米生物炭促进了水稻植株地上部干物质和氮素积累,最终使稻米产量提高1.95-12.25%,且IAWDNB10IAWDB20处理间产量无显著差异。因此,即使将生物炭施用量减半,纳米生物炭仍能提高干湿交替灌溉稻田土壤氮含量,从而减少活性气态氮损失和全球增温潜势,并同步实现稻米产量的增加。



Abstract  

Biochar (BC) demonstrates considerable potential for reducing nitrogen emissions and improving crop yield. However, it frequently exhibits limited capacity and may increase ammonia (NH3) volatilization. Nano-biochar (NBC) is attracting growing attention due to its higher surface energy, but there is a lack of information for rice production systems, especially under alternate wetting and drying (AWD). Thereforea two-year field experiment was conducted in 2023 and 2024, involving six treatments: continuous flooding (CF) without BC (ICFB0), AWD without BC (IAWDB0), AWD with 20 t ha-1 BC (IAWDB20), AWD with 5,10 and 20 t ha-1 NBC (IAWDNB5, IAWDNB10 and IAWDNB20). Their effects on reactive gaseous nitrogen losses (NH3 and N2O; Nr), floodwater nitrogen, soil environment variables, nitrogen uptake, grain yield, and nitrogen-related global warming potential (GWPN) were evaluated. Results showed that there was no significant difference in NH3 volatilization and grain yield between IAWDB0 and ICFB0 treatments, but AWD increased N2O emission by 41.71-53.25%. Compared with without BC addition, NBC application increased soil mineral nitrogen while decreasing floodwater NH4+-N, thereby reducing NH3 volatilization, N2O emission, Nr and GWPN by 5.92-34.41%, 9.95-25.49%, 6.37-33.39%, 12.20-26.11%, respectively, in AWD paddy fields. Compared to IAWDB20, IAWDNB20 reduced NH3 volatilization, N2O emission, Nr losses and GWPN by 12.97-13.45%, 9.47-17.26%, 13.69%, 9.95-17.89%, respectively, and IAWDNB10 showed no significant difference in 2023, but significantly reduced N2O emission, lowering GWPN by 7.81% in 2024. NBC also promoted aboveground dry matter and nitrogen accumulation in rice plants, ultimately increasing grain yield by 1.95-12.25%, and no significant difference was observed between IAWDNB10 and IAWDB20. Therefore, even with the biochar application rate halved, NBC can still enhance soil nitrogen content, thereby mitigating Nr losses and GWPN, while simultaneously improving grain yield in AWD paddy fields.

 

Keywords:  nano-biochar       paddy soil       NH3 volatilization       N2O emission       grain yield  
Online: 22 December 2025  
Fund: 

This work was supported by the China Postdoctoral Science Foundation (2023M742952), the Natural Science Foundation of Jiangsu Province, China (BK20220594), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the National Natural Science Foundation of China (52509073).

About author:  #Correspondence Yidi Sun, E-mail: yidisun0626@outlook.com; Jianchang Yang, E-mail: jcyang@yzu.edu.cn * These authors contributed equally to this work and share first authorship.

Cite this article: 

Yidi Sun, Tao Zong, Yuhao Zhou, Jianchang Yang, Xiaoping Xin, Weiyang Zhang, Wenhao Fang, Tong Shen. 2025. Nano-biochar amendment reduces reactive gaseous nitrogen losses and improves grain yield in alternate wetting and drying paddy fields. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.040

Aamer M, Shaaban M, Hassan M U, Huang G, Liu Y, Tang H, Rasul F, Ma Q, Li Z, Rasheed A, Zhang P. 2020. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. Journal of Environmental Management, 255, 109891.

Anupama A, Khare P. 2021. A comprehensive evaluation of inherent properties and applications of nano-biochar prepared from different methods and feedstocks. Journal of Cleaner Production, 320, 128759.

Bahram M, Espenberg M, Pärn J, Lehtovirta-Morley L, Anslan S, Kasak K, Köljalg U, Liira J, Maddison M, Moora M, Niinemets Ü, Öpik M, Pärtel M, Soosaar K, Zobel M, Hildebrand F, Tedersoo L, Mander Ü. 2022. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 13, 1430. 

Baiamonte G, Crescimanno G, Parrino F, De Pasquale C. 2019. Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175, 294–303.

Boehm H P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32, 759–769.

Chaubey A K, Pratap T, Preetiva B, Patel M, Singsit J S, Pittman Jr C U, Mohan D. 2024. Definitive review of nanobiochar. ACS Omega, 9, 12331–12379.

Chen G, Chen Y, Zhao G, Cheng W, Guo S, Zhang H, Shi W. 2015. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields? Agriculture, Ecosystems & Environment, 209, 26–33.

Chen S, Cheng M, Guo Z, Xu W, Du X, Li Y. 2020. Enhanced atmospheric ammonia pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions. Environmental Pollution, 263, 114421.

Chen T, Liu C, Zhang F, Han H, Wang Z, Yi B, Tang L, Meng J, Chi D, Wilson L T, Chen W. 2022. Acid-modified biochar increases grain yield and reduces reactive gaseous N losses and N-related global warming potential in alternate wetting and drying paddy production system. Journal of Cleaner Production, 377, 134451.

Chen X, Duan M, Zhou B, Cui L. 2022. Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic characteristics of a sandy loam soil. Soil Use and Management, 38, 836–849. 

Chen X, Liu G, Liu B, Chen T, Li Y, Chen W, Pang J, Siddique K H M, Chi D. 2025. Zeolite amendment enhances grain yield and mitigates greenhouse gas emissions in an intensive aerobic rice system. Field Crops Research, 327, 109884.

Dai L, Lu Q, Zhou H, Shen F, Liu Z, Zhu W, Huang H. 2021. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 420, 126547.

Egyir M, Luyima D, Park S J, Lee KS, Oh T K. 2022. Volatilisation of ammonia from soils amended with modified and nitrogen-enriched biochars. Science of the Total Environment, 835, 155453.

Feng D, Guo D, Zhang Y, Sun S, Zhao Y, Shang Q, Sun H, Wu J, Tan H. 2021. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption. Chemical Engineering Journal, 410, 127707.

Feng Y, Sun H, Xue L, Liu Y, Gao Q, Lu K, Yang L. 2017. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 168, 1277–1284.

Fungo B, Lehmann J, Kalbitz K, Thiongo M, Tenywa M, Okeyo I, Neufeldt H. 2019. Ammonia and nitrous oxide emissions from an Ultisol amended with Tithonia green manure, urea and biochar. Biology and Fertility of Soils, 55, 135–148.

Gong X, Shi W, Wu J, Qin J, Huang W, Feng Y, Sun H, Zheng J, Cheng K, Joseph S, Chen J, Bian R, Li L, Pan G. 2025. Converting biochar into biochar-based urea promotes environmental and economic sustainability in a rice–wheat rotation system. GCB Bioenergy, 17, e70014.

Graf D R H, Jones C M, Hallin S. 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and the importance of community structure for N2O emissions. PLoS ONE, 9, e114118.

Gu S, Lian F, Han Y, Taherymoosavi S, Mitchell D, Joseph S, Wang Z, Xing B. 2022. Nano-biochar modulates the formation of iron plaque through facilitating iron-involved redox reactions on aquatic plant root surfaces. Environmental Science (Nano), 9, 1974–1985.

Gu X, Li H, Shi Y, Sun C, Li J, Li S. 2025. Magnesium modified biochar facilitates favorable nitrogen conversion to mitigate ammonia and nitrous oxide emissions during pig manure composting. Chemical Engineering Journal, 504, 159073.

Guo P, Zhang J, Zhou Y, Tang C, Wang X, Gao X, Duan G, Lin A, Zhang T, Li S. 2023. Remediation of Cr(VI)-contaminated soil by ball milling modified zero-valent iron biochar composites: Insights into long-term stability and microbial community. Journal of Environmental Chemical Engineering, 11, 111279.

Gupta A, Gupta R, Verma N. 2025. A micro-nano formulation of multi-micronutrient-and carbon nanofiber-modified biochar for enhanced plant growth. Environmental Science (Nano), 12, 2076–2090.

He T, Yuan J, Xiang J, Lin Y, Luo J, Lindsey S, Liao X, Liu D, Ding W. 2022. Combined biochar and double inhibitor application offsets NH3 and N2O emissions and mitigates N leaching in paddy fields. Environmental Pollution, 292, 118344.

Hou P, Jiang Y, Yan L, Petropoulos E, Wang J, Xue L, Yang L, Chen D. 2021. Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis. Science of the Total Environment, 793, 148554.

Huang J, Zimmerman A R, Chen H, Gao B. 2020. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. Environmental Pollution, 258, 113809.

Ibrahim M M, Wu F, Chen Y, Liu D, Zhang W, He Z, Hou E, Xing S, Mao Y. 2023. Impacts of MgO- and sepiolite-biochar composites on N-partitioning and dynamics of N-cycling bacteria in a soil–maize system: A field-based 15N-urea tracer study. Geoderma, 429, 116236.

IPCC (Intergovernmental Panel on Climate Change). 2006. Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES), Japan.

Ji C, Li S, Geng Y, Yuan Y, Zhi J, Yu K, Han Z, Wu S, Liu S, Zou J. 2020. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations. Geoderma, 365, 114223.

Jiang S, Wang J, Zhao Y, Shang Y, Gao X, Li H, Wang Q, Zhu Y. 2017. Sustainability of water resources for agriculture considering grain production, trade and consumption in China from 2004 to 2013. Journal of Cleaner Production, 149, 1210–1218.

Lagomarsino A, Agnelli A E, Linquist B, Adviento-Borbe M A, Agnelli A, Gavina G, Ravaglia S, Ferrara R M. 2016. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of Central Italy. Pedosphere, 26, 533–548.

LaHue G T, Chaney R L, Adviento-Borbe M A, Linquist B A. 2016. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives. Agriculture, Ecosystems & Environment, 229, 30–39.

Laishram D, Kim S B, Lee S Y, Park S J. 2024. Advancements in biochar as a sustainable adsorbent for water pollution mitigation. Advanced Science, 12, 2410383.

Li L, Huang Z, Mu Y, Song S, Zhang Y, Tao Y, Nie L. 2024a. Alternate wetting and drying maintains rice yield and reduces global warming potential: A global meta-analysis. Field Crops Research, 318, 109603.

Li P, Yan M, Li M, Zhou T, Li H, Si B. 2024b. Migration rules and mechanisms of nano-biochar in soil columns under various transport conditions. Nanomaterials, 14, 1035. 

Li Y, Tan M, Gong F, Wu Q, Chi D. 2023. The increasing risk of ammonia volatilization in farmland from the recovery product of magnesium-modified biochar after nitrogen and phosphorus adsorption. Science of the Total Environment, 903, 166575.

Li Y, Wang X, Guan Y, Wu Q, Chi D, Bolan N S, Siddique K H M. 2025. Nano-biochar-based struvite with urea reduces ammonia emission and warming potential, promotes nitrogen utilization balance, and improves net ecosystem economic benefits of paddy fields. Field Crops Research, 326, 109872.

Li Y, Yang Y, Sun Y, Jiao Y, Wang Y, Chen H, Wu Q, Chi D. 2022. Using nitrogen-loaded biochar for soil improvement to decrease applied nitrogen and stabilize rice yield under alternate wet-dry irrigation. Soil & Tillage Research, 223, 105493.

Lian F, Gu S, Han Y, Wang Z, Xing B. 2022. Novel insights into the impact of nano-biochar on composition and structural transformation of mineral/nano-biochar heteroaggregates in the presence of root exudates. Environmental Science & Technology, 56, 9816–9825.

Lian F, Xing B. 2024. From bulk to nano: Formation, features, and functions of nano-black carbon in biogeochemical processes. Environmental Science & Technology, 58, 15910–15925.

Liu C, Chen T, Zhang F, Han H, Yi B, Chi D. 2024. Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation. Agricultural Water Management, 300, 108908.

Liu J, Jiang J, Meng Y, Aihemaiti A, Xu Y, Xiang H, Gao Y, Chen X. 2020. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 388, 122026. 

Liu L, Zhang X, Xu W, Liu X, Li Y, Wei J, Wang Z, Lu X. 2020. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environmental Pollution, 265, 114862.

Liu R, Yang J. 2023. Enhanced removal of sulfamethoxazole in soil via ball-milled Fe0–FeS@BC activated persulfate. Journal of Environmental Chemical Engineering, 11, 110747.

Liu X, Ma Y, Manevski K, Andersen M N, Li Y, Wei Z, Liu F. 2022. Biochar and alternate wetting–drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol. Science of the Total Environment, 806, 150513.

Lyu H, Gao B, He F, Zimmerman A R, Ding C, Tang J, Crittenden J C. 2018. Experimental and modelling investigations of ball-milled biochar for aqueous methylene-blue removal. Chemical Engineering Journal, 335, 110–119.

Ma C, Xu Z, Yang W, Tang T, Liu Q, Zhang D, Prasanna P, Qu Z. 2025. Co-application of microalgae and biochar increases yield and mitigates greenhouse gas emissions in saline-alkali soil. Field Crops Research, 327, 109885.

Ma R, Zou J, Han Z, Yu K, Wu S, Li Z, Liu S, Niu S, Horwath W R, Zhu-Barker X. 2021. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Global Change Biology, 27, 855–867.

Mahmoud N, Boudina A, Nait Abderrahmane O, Trari M. 2025. Characterization of SrMoO4 synthesized at different temperatures and its photocatalytic performance toward carbendazim fungicide degradation under UV light. Separation and Purification Technology, 357, 130225.

Nguyen B T, Phan B T, Nguyen T X, Nguyen V N, Tran T V, Bach Q V. 2020. Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. Journal of Soils and Sediments, 20, 297–307.

Nguyen T T N, Xu C, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace H M, Bai S H. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79–96.

Nicol G W, Leininger S, Schleper C, Prosser J I. 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia-oxidizing archaea and bacteria. Environmental Microbiology, 10, 2966–2978.

Norton G J, Shafaei M, Travis A J, Deacon C M, Danku J, Pond D, Cochrane N, Lockhart K, Salt D, Zhang H, Dodd I C, Hossain M, Islam M R, Price A H. 2017. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research, 205, 1–13.

Noyce G L, Basiliko N, Fulthorpe R, Sackett T E, Thomas S C. 2015. Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biology and Fertility of Soils, 51, 649–659.

Pawar V S, Bhande D, Pawar S D, Mudila H, Kaushik A, Kumar A. 2022. Investigating purification and activity analysis of urease enzyme extracted from jack bean source: A green chemistry approach. Analytical Biochemistry, 659, 114925.

Peng S, Yang S, Xu J, Luo Y, Hou H. 2011. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy and Water Environment, 9, 333–342.

Qu J, Xue J, Sun M, Li K, Wang J, Zhang G, Wang L, Jiang Z, Zhang Y. 2024. Superefficient non-radical degradation of benzo[a]pyrene in soil by Fe-biochar composites activating persulfate. Chemical Engineering Journal, 481, 148585.

Rajput V D, Minkina T, Ahmed B, Singh V K, Mandzhieva S, Sushkova S, Bauer T, Verma K K, Shan S, van Hullebusch E D, Wang B. 2022. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 210, 112891.

Sani M N H, Amin M, Siddique A B, Nasif S O, Ghaley B B, Ge L, Wang F, Yong J W H. 2023. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. Science of the Total Environment, 905, 166881.

Sha Z, Li Q, Lv T, Misselbrook T, Liu X. 2019. Response of ammonia volatilization to biochar addition: A meta-analysis. Science of the Total Environment, 655, 1387–1396.

Song Q, Kong F, Liu B, Song X, Ren H. 2024. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. Environmental Science & Ecotechnology, 21, 100420.

Sultan H, Li Y, Ahmed W, Yixue M, Shah A, Faizan M, Ahmad A, Abbas H M M, Nie L, Khan M N. 2024. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. Journal of Environmental Management, 355, 120448.

Sun H, Lu H, Chu L, Shao H, Shi W. 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 575, 820–825.

Sun Y, Wang X, Wu Q, Zong T, Xin X, Xie J, Yang J. 2024. Use of rice straw nano-biochar to slow down water infiltration and reduce nitrogen leaching in a clayey soil. Science of the Total Environment, 948, 174956.

Sun Y, Wu Q, Chen H, Jia X, Gong F, Liu X, Chi D. 2023. N-loaded clinoptilolite under water-saving irrigation mitigates ammonia volatilization while increasing grain yield and water-nitrogen use efficiency. Field Crops Research, 300, 109000.

Tan X, Zhu S, Wang R, Chen Y, Show P, Zhang F, Ho S. 2021. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups. Chinese Chemical Letters, 32, 2939–2946.

Tao R, Cui M, Li Y, Wang J, He W, Zhao Y, Xie W, Shen Y, Feng Y, White J C. 2024. Nanoscale biochar for fertilizer quality optimization in waste composting: Microbial community regulation. Bioresource Technology, 414, 131571.

Vishnu D, Dhandapani B, Vaishnavi G, Preethi V. 2022. Synthesis of tri-metallic surface engineered nanobiochar from Cynodon dactylon residues in a single step—Batch and column studies for the removal of copper and lead ions. Chemosphere, 286, 131572.

Wang B, Gao B, Wan Y. 2018a. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). Journal of Industrial and Engineering Chemistry, 61, 161–168. 

Wang W, Wang X, Zhang X, Bai Z, Ma L. 2024. Modified lignin can achieve mitigation of ammonia and greenhouse gas emissions simultaneously in composting. Bioresource Technology, 402, 130840. 

Wang Y, Guo J, Vogt R D, Mulder J, Wang J, Zhang X. 2018b. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Global Change Biology, 24, e617–e626.

Wang Y, Tian Z, Li X, Zhang M, Fang Y, Xiang Y, Liu Y, Liu E, Jia Z, Siddique K H M, Ting W, Zhang W, Zhang P. 2024. Straw-derived biochar regulates soil enzyme activities, reduces greenhouse gas emissions, and enhances carbon accumulation in farmland under mulching. Field Crops Research, 317, 109547.

Win K T, Toyota K, Motobayashi T, Hosomi M. 2009. Suppression of ammonia volatilization from a paddy soil fertilized with anaerobically digested cattle slurry by wood vinegar application and floodwater management. Soil Science and Plant Nutrition, 55, 190–202.

Xiao J, Hu R, Chen G. 2020. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). Journal of Hazardous Materials, 387, 121980.

Xu Y, Huang Y, Weng X, Dey Traye I, Tang S, Jiang X, Zhu K, Zhang W, Zhang H, Wang Z, Yang J. 2025. Cooking and eating quality of rice as affected by nitrogen fertilizers and alternate wetting and moderate drying irrigation at panicle stage. Agricultural Water Management, 318, 109715.

Yi Z, Jeyakumar P, Yin C, Sun H. 2023. Effects of biochar in combination with varied N inputs on grain yield, N uptake, NH3 volatilization, and N2O emission in paddy soil. Frontiers in Microbiology, 14, 1174805.

Yin Q, Zhu G, Wang R, Zhao Z. 2024. Enhancement of the thermal properties of the phase change composite of acid-base modified biochar/paraffin wax. Solar Energy Materials and Solar Cells, 269, 112802.

Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth N C, Hessen D O, Sun Z, Yu L, Cai W, et al. 2019. Managing nitrogen to restore water quality in China. Nature, 567, 516–520.

Zang Y, Wu G, Li Q, Xu Y, Xue M, Chen X, Wei H, Zhang W, Zhang H, Liu L, Wang Z, Gu J, Yang J. 2024. Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice by regulating starch metabolism. Journal of Integrative Agriculture, 23, 1507–1522.

Zhang F, Chen T, Zhu H, Wang Z, Zhang W, Dai W, Chi D, Xia G. 2024. Biochar decreased N loss from paddy ecosystem under alternate wetting and drying in the lower Liaohe River plain, China. Agricultural Water Management, 305, 109108.

Zhang Q, Song Y, Wu Z, Yan X, Gunina A, Kuzyakov Y, Xiong Z. 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice–wheat rotation. Journal of Cleaner Production, 242, 118435.

Zhang Y, Huang M, Ren H, Shi Y, Qian S, Wang Y, Zhang J, Müller C, Li S, Sardans J, Peñuelas J, Zou J. 2024. Nitrous oxide emissions in Fe-modified biochar amended paddy soil are controlled by autotrophic nitrification. Geoderma, 446, 116917.

Zhang Y, Wang W, Li S, Zhu K, Hua X, Harrison MT, Liu K, Yang J, Liu L, Chen Y. 2023. Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation. Agricultural Water Management, 281, 108265.

Zhang Y, Zhang Z, Chen Y. 2021. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environmental Science & Technology, 55, 8068–8078.

Zhao Q, Chen T, Wang S, Sha Y, Zhang F, Sun Y, Chi D 2023. Effects of fiveyear field aged zeolite on grain yield and reactive gaseous N losses in alternate wetting and drying paddy system. Science of the Total Environment 904, 166279.

Zhou S, Sun H, Bi J, Zhang J, Riya S, Hosomi M. 2020. Effect of water-saving irrigation on the N2O dynamics and the contribution of exogenous and endogenous nitrogen to N2O production in paddy soil using 15N tracing. Soil & Tillage Research, 200, 104610.

[1] Shending Chen, Ahmed S. Elrys, Siwen Du, Wenyan Yang, Zucong Cai, Jinbo Zhang, Lei Meng, Christoph Müller. Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops[J]. >Journal of Integrative Agriculture, 2026, 25(1): 302-312.
[2] Lei Wu, Jing Hu, Muhammad Shaaban, Jun Wang, Kailou Liu, Minggang Xu, Wenju Zhang. Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization[J]. >Journal of Integrative Agriculture, 2026, 25(1): 262-272.
[3] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[4] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[5] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[6] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[7] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[8] Jiannan Xiao, Shikui Dong, Hao Shen, Ran Zhang, Hang Shi, Fencai He, Wei Li, Xiaoyan Li, Yu Li, Chengxiang Ding. Short-term P addition may improve the stimulating effects of N deposition on N2O emissions in alpine grasslands on the Qinghai-Tibet Plateau[J]. >Journal of Integrative Agriculture, 2025, 24(3): 900-912.
[9] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[10] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[11] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[12] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[13] Jian Lu, Sicheng Deng, Muhammad Imran, Jingyin Xie, Yuanyuan Li, Jianying Qi, Shenggang Pan, Xiangru Tang, Meiyang Duan. Assessing the yield difference of double-cropping rice in South China driven by radiation use efficiency[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3692-3705.
[14] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[15] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

No Suggested Reading articles found!