Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
A single-nucleus and spatial transcriptomic atlas of the shoot apex reveals insights into the vegetative-to-reproductive transition in loquat

Chongbin Zhao1*, Jiale Huang1*, Yuanyuan Jiang2*, Jie Jiang1, Wenbing Su3, Shunquan Lin1, Guibing Hu1#, Xianghui Yang1#, Ze Peng1#

1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs)/College of Horticulture, South China Agricultural University, Guangzhou 510642, China

2 Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China

3 Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China

 Highlights 

l This study presents the first single-cell and spatial transcriptomic resource for loquat shoot apices during the vegetative-to-reproductive transition.

l Epidermal and shoot meristematic cells exhibited the most pronounced transcriptional changes, suggesting their crucial roles in floral initiation.

l A total of 43 candidate genes were identified as key regulators in the initiation of floral bud differentiation in loquat shoot apices, driven by a coordinated network of photoperiod- and circadian rhythm-related genes.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

开花与坐果时间是决定果树经济价值的重要因素。然而,调控植物从营养生长向生殖生长转变的机制尚未在单细胞及空间层面得到深入阐明。本研究构建了枇杷(Eriobotrya japonica)茎尖的单核转录组(snRNA-seq)与空间转录组(stRNA-seq)整合图谱。通过snRNA-seq共获得42,546个高质量细胞核,可划分为22个细胞亚群,归属于七大细胞类型。拟时序分析重构了细胞发育轨迹,揭示其呈现出向外部和内部组织分化的分支模式,并识别出与细胞分化动态相关的关键基因。通过比较花芽分化前与启动阶段的转录组,共检测到3,329个差异表达基因,其中包括67个拟南芥成花基因的同源基因。其中,表皮层与茎尖分生组织细胞展现出最为显著的转录组重塑,凸显了这两类细胞在花芽分化启动过程中的核心地位。此外,研究还预测了43个关键候选基因(如EjCRY2EjAGL79),它们均位于细胞发育轨迹的关键分支点,可能在细胞命运决定中发挥关键作用,并参与了以光周期和昼夜节律为主导的调控网络。空间转录组分析结果与单核转录组数据高度吻合,进一步验证了表皮及茎尖分生组织等关键区域的细胞类型鉴定。综上所述,本研究不仅为枇杷及其他果树的单细胞与空间转录组研究提供了宝贵的可用于细胞类型鉴定的标记基因与数据资源,其所鉴定的候选基因有助于未来深入解析枇杷花芽启动的分子机制,并为通过分子育种手段定向调控枇杷开花与结果时间提供了潜在靶点。



Abstract  

Flowering time and subsequent fruiting significantly influence the economic value of fruit trees. However, the regulatory mechanisms underlying the vegetative-to-reproductive transition remain understudied, particularly at single-cell and spatial levels. Here, we present a single-nucleus (snRNA-seq) and spatial transcriptomic (stRNA-seq) atlas of shoot apices in loquat (Eriobotrya japonica), a perennial fruit crop with both nutritional and medicinal importance. From the snRNA-seq dataset, 42,546 nuclei were profiled and resolved into 22 clusters corresponding to seven major cell types. Pseudotime analysis reconstructed developmental trajectories, revealing bifurcated lineages toward external and internal tissues, and identified genes dynamically associated with cell differentiation. Comparative analysis between the pre-initiation and onset stages of floral bud initiation uncovered 3,329 differentially expressed genes, including 67 homologs of Arabidopsis flowering-related genes, with the most pronounced transcriptional changes observed in epidermal and shoot meristematic cells, underscoring their central roles in floral initiation. Moreover, 43 key candidate genes, such as EjCRY2 and EjAGL79, associated with pseudotime branch points critical for cell fate decisions were predicted to act within a regulatory network dominated by photoperiod- and circadian rhythm-related pathways. Finally, integration with stRNA-seq demonstrated well concordance with snRNA-seq results and supported cell-type annotations particularly for epidermal and shoot meristematic cells. Collectively, the marker genes and associated datasets generated here provide a valuable resource for advancing single-cell and spatial transcriptomic research in loquat and potentially other fruit tree species. In addition, the identified candidate genes represent promising targets for in-depth functional studies and for breeding strategies aimed at manipulating flowering and fruiting time in loquat.

Keywords:  flowering       loquat       shoot apical meristem       snRNA-seq       spatial transcriptomics  
Online: 18 December 2025  
Fund: 

This research was funded by the National Natural Science Foundation of China (32202429), Natural Science Foundation of Guangdong Province (2024A1515013141, 2022A1515012273), Guangzhou Science and Technology Project (2025A04J5441), Fujian Academy of Agricultural Sciences (GJYS202404, DWHZ2024-11), the Open Fund of the Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region (Grant number FMR2022009Z).

About author:  Chongbin Zhao, E-mail: zhaocb@stu.scau.edu.cn; Jiale Huang, E-mail: 709582263@stu.scau.edu.cn; Yuanyuan Jiang, E-mail: yyjiang613@163.com; #Correspondence Ze Peng, E-mail: zepeng@scau.edu.cn; Xianghui Yang, E-mail: gzyxh@scau.edu.cn; Guibing Hu, E-mail: guibing@scau.edu.cn *These authors contributed equally to this study.

Cite this article: 

Chongbin Zhao, Jiale Huang, Yuanyuan Jiang, Jie Jiang, Wenbing Su, Shunquan Lin, Guibing Hu, Xianghui Yang, Ze Peng. 2025. A single-nucleus and spatial transcriptomic atlas of the shoot apex reveals insights into the vegetative-to-reproductive transition in loquat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.031

Abe M, Katsumata H, Komeda Y, Takahashi T. 2003. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development, 130, 635-643.

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309, 1052-1056.

Amasino R M, Michaels S D. 2010. The timing of flowering. Plant Physiology, 154, 516-520.

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13, 627-639.

Baral R, Vainer A, Melzer S, Hause B, Panda S. 2025. “bud to bloom”—hormonal coordination in floral initiation. Plant Biology, n/a, 10-1111.

Blázquez M A, Ahn J H, Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 33, 168-171.

Bouché F, Lobet G, Tocquin P, Périlleux C. 2016. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research, 44, D1167-D1171.

Cao Y, Ma J, Han S, Hou M, Wei X, Zhang X, Zhang Z J, Sun S, Ku L, Tang J, Dong Z, Zhu Z, Wang X, Zhou X, Zhang L, Li X, Long Y, Wan X, Duan C. 2023. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnology Journal, 21, 1839-1859.

Cha J, Kim J, Kim T, Zeng Q, Wang L, Lee S Y, Kim W, Somers D E. 2017. GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock. Nature Communications, 8, 3.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant, 16, 1733-1742.

Chen Q, Yong S, Xu F, Fu H, Dang J, He Q, Jing D, Wu D, Liang G, Guo Q. 2024. EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis. Journal of Integrative Agriculture, 23, 1568-1579.

Cheng Z, Mu C, Li X, Cheng W, Cai M, Wu C, Jiang J, Fang H, Bai Y, Zheng H, Geng R, Xu J, Xie Y, Dou Y, Li J, Mu S, Gao J. 2023. Single-cell transcriptome atlas reveals spatiotemporal developmental trajectories in the basal roots of moso bamboo (phyllostachys edulis). Horticulture Research, 10, uhad122.

Coleman-Derr D, Zilberman D. 2012. Deposition of histone variant h2a.z within gene bodies regulates responsive genes. PLoS Genetics, 8, e1002988.

Conde D, Triozzi P M, Pereira W J, Schmidt H W, Balmant K M, Knaack S A, Redondo-López A, Roy S, Dervinis C, Kirst M. 2022. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in populus. Development, 149, dev200632.

Dong J, Kim S T, Lord E M. 2005. Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiology, 138, 778-789.

Du S, Li L, Li L, Wei X, Xu F, Xu P, Wang W, Xu P, Cao X, Miao L, Guo T, Wang S, Mao Z, Yang H. 2020. Photoexcited cryptochrome2 interacts directly with TOE1 and TOE2 in flowering regulation. Plant Physiology, 184, 487-505.

Emms D M, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 238.

Fornara F, de Montaigu A, Coupland G. 2010. SnapShot: control of flowering in Arabidopsis. Cell, 141, 550.

Han H, Yan A, Li L, Zhu Y, Feng B, Liu X, Zhou Y. 2020. A signal cascade originated from epidermis defines apical-basal patterning of Arabidopsis shoot apical meristems. Nature Communications, 11, 1214.

Hao Y, Hao S, Andersen-Nissen E, Mauck W M, Zheng S, Butler A, Lee M J, Wilk A J, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou E P, Jain J, Srivastava A, Stuart T, Fleming L M, Yeung B, Rogers A J et al. 2021. Integrated analysis of multimodal single-cell data. Cell, 184, 3573-3587.

Hazen S P, Schultz T F, Pruneda-Paz J L, Borevitz J O, Ecker J R, Kay S A. 2005. LUX ARRHYTHMO encodes a myb domain protein essential for circadian rhythms. Proceedings of the National Academy of Sciences, 102, 10387-10392.

Jiang S, An H, Xu F, Zhang X. 2020. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. GigaScience, 9, giaa015.

Jiang Y Y, Zhu Y M, Peng Z, Su W B, Peng J R, Yuan Y, Zhang L, Zhang Z K, Yang X H, Gao Y S, Lin S Q, Ma C J. 2025. Two FT genes synergistically regulate the reproductive transition of loquat. Horticultural Plant Journal, 11, 548-563.

Jiang Y, Peng J, Wang M, Su W, Gan X, Jing Y, Yang X, Lin S, Gao Y. 2019b. The role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in regulating flowering in loquat (Eriobotrya japonica lindl.). International Journal of Molecular Sciences, 21, 248.

Jiang Y, Peng J, Zhang Z, Lin S, Lin S, Yang X. 2019c. The role of EjSVPs in flower initiation in Eriobotrya japonica. International Journal of Molecular Sciences, 20, 5933.

Jiang Y, Peng J, Zhu Y, Su W, Zhang L, Jing Y, Lin S, Gao Y. 2019a. The role of EjSOC1s in flower initiation in Eriobotrya japonica. Frontiers in plant science. 10, 253.

Kaufmann K, Wellmer F, Muiño J M, Ferrier T, Wuest S E, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz E M, Angenent G C, Riechmann J L. 2010. Orchestration of floral initiation by APETALA1. Science, 328, 85-89.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37, 907-915.

Kimura Y, Tasaka M, Torii K U, Uchida N. 2018. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development, 145, dev156380.

Kurokura T, Mimida N, Battey N H, Hytönen T. 2013. The regulation of seasonal flowering in the Rosaceae. Journal of Experimental Botany, 64, 4131-4141.

Laureyns R, Joossens J, Herwegh D, Pevernagie J, Pavie B, Demuynck K, Debray K, Coussens G, Pauwels L, Van Hautegem T, Bontinck M, Strable J, Nelissen H. 2022. An in situ sequencing approach maps PLASTOCHRON1 at the boundary between indeterminate and determinate cells. Plant Physiology, 188, 782-794.

Laux T. 2003. The stem cell concept in plants: a matter of debate. Cell, 113, 281-283.

Lee T A, Illouz-Eliaz N, Nobori T, Xu J, Jow B, Nery J R, Ecker J R. 2025. A single-cell, spatial transcriptomic atlas of the Arabidopsis life cycle. Nature Plants. n/a. doi:10.1038/s41477-025-02072-z. Epub ahead of print.

Li R, Wang Z, Wang J, Li L. 2023b. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Communications, 4, 100665.

Li W, Liu X, Zhao C, Wu W, Jiang Y, Su W, Lin S, Yang X, Peng Z. 2023a. Genome-wide characterization of MADS-box genes identifies candidates associated with flower and fruit development in loquat (Eriobotrya japonica lindl.). Agronomy, 13, 2709.

Liang J, Wu Z, Zhang Y, Yang Y, Wang S, Gai M, Wang Y, Zhang X, Xue J, Duan B, Yang H. 2025. Single-cell RNA sequencing of shoot apex reveals the mechanism of cyclin regulating cell division via auxin signaling pathway in populus alba. Frontiers in Plant Science, 16, 1555388.

Liu Y, Song H, Liu Z, Hu G, Lin S. 2013. Molecular characterization of loquat EjAP1 gene in relation to flowering. Plant Growth Regulation, 70, 287-296.

Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. 2021. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biology, 22, 66.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Martins A O, Nunes-Nesi A, Araújo W L, Fernie A R. 2018. To bring flowers or do a runner: gibberellins make the decision. Molecular Plant, 11, 4-6.

Mayfield J A, Preuss D. 2000. Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nature Cell Biology, 2, 128-130.

Meyerowitz E M. 1997. Genetic control of cell division patterns in developing plants. Cell, 88, 299-308.

Moncada R, Barkley D, Wagner F, Chiodin M, Devlin J C, Baron M, Hajdu C H, Simeone D M, Yanai I. 2020. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature Biotechnology, 38, 333-342.

Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology, 46, 292-299.

Nasrallah J B, Nasrallah M E. 2014. S-locus receptor kinase signalling. Biochemical Society Transactions, 42, 313-319.

Neumann M, Xu X, Smaczniak C, Schumacher J, Yan W, Blüthgen N, Greb T, Jönsson H, Traas J, Kaufmann K, Muino J M. 2022. A 3d gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nature Communications, 13, 2838.

Niu F, Rehmani M S, Yan J. 2024. Multilayered regulation and implication of flowering time in plants. Plant Physiology and Biochemistry, 213, 108842.

Peng Z, Wang M, Zhang L, Jiang Y, Zhao C, Shahid M Q, Bai Y, Hao J, Peng J, Gao Y, Su W, Yang X. 2021. EjRAV1/2 delay flowering through transcriptional repression of EjFTs and EjSOC1s in loquat. Frontiers in Plant Science, 12, 816086.

Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nature Protocols, 11, 1650-1667.

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner H A, Trapnell C. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods, 14, 979-982.

Rea A C, Nasrallah J B. 2015. In vivo imaging of the S-locus receptor kinase, the female specificity determinant of self-incompatibility, in transgenic self-incompatible Arabidopsis thaliana. Annals of Botany, 115, 789-805.

Reig C, Gil-Muñoz F, Vera-Sirera F, García-Lorca A, Martínez-Fuentes A, Mesejo C, Pérez-Amador M A, Agustí M. 2017. Bud sprouting and floral induction and expression of FT in loquat [Eriobotrya japonica (thunb.) Lindl.]. Planta, 246, 915-925.

Satterlee J W, Strable J, Scanlon M J. 2020. Plant stem-cell organization and differentiation at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 117, 33689-33699.

Seago J L. 2020. Revisiting the occurrence and evidence of endodermis in angiosperm shoots. Flora, 273, 151709.

Shen T, Xu M, Qi H, Feng Y, Yang Z, Xu M. 2022. Protoplast isolation and transcriptome analysis of developing xylem in pinus massoniana (pinaceae). Molecular Biology Reports, 49, 1857-1869.

Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to rome. Cellular and Molecular Life Sciences, 68, 2013-2037.

Sun K, Lun F F M, Jiang P, Sun H. 2017. BSviewer: a genotype-preserving, nucleotide-level visualizer for bisulfite sequencing data. Bioinformatics, 33, 3495-3496.

Sunaga-Franze D Y, Muino J M, Braeuning C, Xu X, Zong M, Smaczniak C, Yan W, Fischer C, Vidal R, Kliem M, Kaufmann K, Sauer S. 2021. Single-nucleus RNA sequencing of plant tissues using a nanowell-based system. Plant Journal, 108, 859-869.

Teotia S, Tang G. 2015. To bloom or not to bloom: role of MicroRNAs in plant flowering. Molecular Plant, 8, 359-377.

Tirosh I, Izar B, Prakadan S M, Wadsworth M H, Treacy D, Trombetta J J, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin J, Cohen O, Shah P, Lu D, Genshaft A S, Hughes T K, Ziegler C G K, Kazer S W et al.. 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352, 189-196.

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon N J, Livak K J, Mikkelsen T S, Rinn J L. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32, 381-386.

Tsuji H, Taoka K, Shimamoto K. 2011. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology, 14, 45-52.

Wang J, Ma X, Hu Y, Feng G, Guo C, Zhang X, Ma H. 2024. Regulation of micro- and small-exon retention and other splicing processes by GRP20 for flower development. Nature Plants, 10, 66-85.

Wu W, Zhao C, Jiang J, Li H, Su W, Jiang Y, Yang X, Peng Z. 2025. Insights into loquat flowering regulation through analysis of alternative splicing of flowering-time genes and functions of EjCO1 isoforms. Horticulturae. 11, 1064.

Xu Y, Gao C, Huang Z, Liu J, Ren Z, He Y, Xia Y, Feng S, Wu Y. 2024. MicroRNA156: a count up timer with potential to enhance horticultural traits. Ornamental Plant Research, 4, e010.

Yang M, Wu Z, Chen R, Abbas F, Hu G, Huang X, Guan W, Xu Y, Wang H. 2023. Single-nucleus RNA sequencing and mRNA hybridization indicate key bud events and LcFT1 and LcTFL1-2 mRNA transportability during floral transition in litchi. Journal of Experimental Botany, 74, 3613-3629.

Yang M, Wu Z, Huang L, Abbas F, Wang H. 2022. Systematic methods for isolating high purity nuclei from ten important plants for omics interrogation. Cells, 11, 3919.

Yoon E K, Dhar S, Lee M, Song J H, Lee S A, Kim G, Jang S, Choi J W, Choe J, Kim J H, Lee M M, Lim J. 2016. Conservation and diversification of the SHR-SCR-SCL23 regulatory network in the development of the functional endodermis in Arabidopsis shoots. Molecular Plant, 9, 1197-1209.

You Y, Fu Y, Li L, Zhang Z, Jia S, Lu S, Ren W, Liu Y, Xu Y, Liu X, Jiang F, Peng G, Sampath Kumar A, Ritchie M E, Liu X, Tian L. 2024. Systematic comparison of sequencing-based spatial transcriptomic methods. Nature Methods, 21, 1743-1754.

Zeng L, Zacharaki V, van Es S W, Wang Y, Schmid M. 2025. Mutations in the floral regulator gene HUA2 restore flowering to the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. Plant Physiology, 198, kiaf225.

Zhang C, Jian M, Li W, Yao X, Tan C, Qian Q, Hu Y, Liu X, Hou X. 2023. Gibberellin signaling modulates flowering via the DELLA–BRAHMA–NF-YC module in Arabidopsis. Plant Cell, 35, 3470-3484.

Zhang L, Jiang Y, Zhu Y, Su W, Long T, Huang T, Peng J, Yu H, Lin S, Gao Y. 2019. Functional characterization of GI and CO homologs from Eriobotrya deflexa nakai forma koshunensis. Plant Cell Reports, 38, 533-543.

Zhang T, Chen Y, Wang J. 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Developmental Cell, 56, 1056-1074.

Zhang W. 2022. Putting genes on the map: spatial transcriptomics of the maize shoot apical meristem. Plant Physiology, 188, 1931-1932.

Zong J, Wang L, Zhu L, Bian L, Zhang B, Chen X, Huang G, Zhang X, Fan J, Cao L, Coupland G, Liang W, Zhang D, Yuan Z. 2022. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist, 234, 494-512.

[1] Xuemei Hou, Meimei Shi, Zhuohui Zhang, Yandong Yao, Yihua Li, Changxia Li, Wenjin Yu, Chunlei Wang, Weibiao Liao. DNA demethylation is involved in nitric oxide-induced flowering in tomato[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1769-1785.
[2] Xiaowei Cai, Ling Xiao, Xiangmei Nie, Qiandong Hou, Sulin Wen, Kun Yang, Xiaopeng Wen. HpFBH3 transactivates HpCO7 via binding to the E-boxes in the promoter and may accelerate flower formation in pitaya[J]. >Journal of Integrative Agriculture, 2025, 24(2): 575-593.
[3] Qian Chen, Shunyuan Yong, Fan Xu, Hao Fu, Jiangbo Dang, Qiao He, Danlong Jing, Di Wu, Guolu Liang, Qigao Guo.

EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1568-1579.

[4] QU Shu-ping, YANG Dan, YU Hai-yang, CHEN Fang-yuan, WANG Ke-xin, DING Wen-qi, XU Wen-long, WANG Yun-li. QTL analysis of early flowering of female flowers in zucchini (Cucurbita pepo L.)[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3321-3330.
[5] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[6] YIN Liang-fen, ZHANG Shu-qin, DU Juan, WANG Xin-yu, XU Wen-xing, LUO Chao-xi . Monilinia fructicola on loquat: An old pathogen invading a new host[J]. >Journal of Integrative Agriculture, 2021, 20(7): 2009-2014.
[7] CHI Zhuo-heng, WANG Yong-qing, DENG Qun-xian, ZHANG Hui, PAN Cui-ping, YANG Zhi-wu. Endogenous phytohormones and the expression of flowering genes synergistically induce flowering in loquat[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2247-2256.
[8] WANG Liang, YANG Xin-lei, CUI Shun-li, WANG Ji-hong, HOU Ming-yu, MU Guo-jun, LI Zi-chao, LIU Li-feng. Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2383-2393.
[9] GUAN Yan-ren, XUE Jing-qi, XUE Yu-qian, YANG Ruo-wen, WANG Shun-li, ZHANG Xiu-xin. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone- and flowering-associated gene expression in forcingcultured tree peony (Paeonia suffruticosa)[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1295-1311.
[10] SONG Shi-wei, LEI Yu-ling, HUANG Xin-min, SU Wei, CHEN Ri-yuan, HAO Yan-wei. Crosstalk of cold and gibberellin effects on bolting and flowering in flowering Chinese cabbage[J]. >Journal of Integrative Agriculture, 2019, 18(5): 992-1000.
[11] LIU Kai, ZHU Ping-yang, Lü Zhong-xian, CHEN Gui-hua, ZHANG Jing-ming, Lü Yao-bing, LU Yan-hui. Effects of sesame nectar on longevity and fecundity of seven Lepidoptera and survival of four parasitoid species commonly found in agricultural ecosystems[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2534-2546.
[12] YANG Guang, ZHAI Hong, WU Hong-yan, ZHANG Xing-zheng, Lü Shi-xiang, WANG Ya-ying, LI Yu-qiu, HU Bo, WANG Lu, WEN Zi-xiang, WANG De-chun, WANG Shao-dong, Kyuya Harada, XIA Zheng-jun, XIE Fu-ti. QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of Japanese×Chinese cultivars[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1900-1912.
[13] LI Jing, WANG Yong-qing, CHEN Dong, TU Mei-yan, XIE Hong-jiang, JIANG Guo-liang, LIU Jia, SUN Shu-xia. The variation of NAD+-SDH gene in mutant white-fleshed loquat[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1744-1750.
[14] PENG Ting, Lü Qiang, ZHAO Ya-fan, SUN Hong-zheng, HAN Ying-chun, DU Yan-xiu, ZHANG Jing, LI Jun-zhou, WANG Lin-lin, ZHAO Quan-zhi. Superior grains determined by grain weight are not fully correlated with the flowering order in rice[J]. >Journal of Integrative Agriculture, 2015, 14(5): 847-855.
[15] WU Ting-ting, LI Jin-yu, WU Cun-xiang, SUN Shi, MAO Ting-ting, JIANG Bing-jun, HOU Wen-sheng, HAN Tian-fu. Analysis of the independent- and interactive-photo-thermal effects on soybean flowering[J]. >Journal of Integrative Agriculture, 2015, 14(4): 622-632.
No Suggested Reading articles found!