Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Increasing fruit weight and altering flavour of pitaya by supplementing blue light during fruit growth

Qingming Sun1#, Juncheng Li1, Satish Kumar2, Ran Yao3, Honghua Su4#

1 Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, 510640, China

2 The New Zealand Institute for Plant & Food Research Limited, Private Bag 1401, Havelock North 4157, New Zealand

3 Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China

4 College of Plant Protection, Yangzhou University, Yangzhou 225009, China

 Highlights 

l Blue light increased the weight, firmness, and antioxidant activity of pitaya fruit.

l Blue light had minor effects on primary metabolites but more pronounced effects on volatile compounds.

l Blue light increased the accumulation of bioactive ingredients in the fruit’s peel.

l The accumulation of flavor-associated volatile compounds, such as organic acids, esters, and terpenes in the pulp, was significantly altered.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

补光技术已被广泛用于果树生产中,但在火龙果上研究较少。本研究从火龙果开花到果实成熟过程中,利用单波长450 nm LED补光灯在田间每晚对其补光四小时,于果实不同发育期检测其果皮和果肉理化参数及代谢物的变化。结果表明,蓝光处理明显增加了果实重量,通过增加果胶含量和延缓半纤维素降解提高了果实硬度,并增强了抗氧化酶活性。蓝光对初级代谢物的影响较小,但对挥发性物质的影响更为明显。蓝光处理可能通过影响丙氨酸、天门冬氨酸和谷氨酸的代谢,促进果实生长,提高果实生物抗性,增加果皮中生物活性成分的积累,并显著改变了果肉中有机酸、酯类和萜类等风味相关挥发性化合物的积累。我们的研究为大田生产中利用补充技术来提高火龙果产量和品质提供了重要参考。



Abstract  

Supplemental light is often used in fruit production, but few studies have been conducted on pitaya. In this study, supplemental blue light was applied to pitaya for four hours each night in the field from flowering to fruit ripening to examine changes in peel and pulp physicochemical parameters and metabolites. Blue light treatment significantly increased fruit weight, improved fruit firmness by increasing pectin content and retarding hemicellulose degradation, and enhanced antioxidant enzyme activity. Blue light had minor effects on primary metabolites but more pronounced effects on volatiles. It is possible that by affecting alanine, aspartate and glutamate metabolism, blue light treatment resulted in significant fruit growth, improved fruit biotic resistance, increased accumulation of bioactive ingredients in the peel, and significantly altered the accumulation of flavor-associated volatile compounds, such as organic acids, esters and terpenes in the pulp. Our results provide an important reference for improving the yield and quality of pitaya production using supplemental light in the field.

Keywords:  pitaya       blue light supplementation       fruit weight       fruit quality       primary metabolites       volatiles  
Online: 24 November 2025  
Fund: 

This work was supported by the National Key Research and Development Project, China (no. 2022YFB3604604), Rural Revitalization Project from Guangdong Province, China (2022-NPY-00-034). 

About author:  #Correspondence Qingming Sun, Tel: +86-20-38765789, E-mail: sunqingming@gdaas.cn; Honghua Su, Tel: +86-514-87979344, E-mail: susugj@126.com

Cite this article: 

Qingming Sun, Juncheng Li, Satish Kumar, Ran Yao, Honghua Su. 2025. Increasing fruit weight and altering flavour of pitaya by supplementing blue light during fruit growth. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.034

Aalifar M, Aliniaeifard S, Arab M, Zare Mehrjerdi M, Dianati Daylami S, Serek M, Woltering E, Li T. 2020. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science, 11, 511.

Ariffin A, Bakar J, Tan C, Rahman R, Karim R, Loi C. 2009. Essential fatty acids of pitaya (dragon fruit) seed oil. Food chemistry, 114, 561−564. 

Cejudo-Bastante M J, Hurtado N, Delgado A, Heredia F J. 2016. Impact of pH and temperature on the colour and betalain content of Colombian yellow pitaya peel (Selenicereus megalanthus). Journal of Food Science and Technology, 53, 2405−2413.

Coban H B. 2020. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess and Biosystems Engineering, 43, 569−591.

Collado C E, Hwang S J, Hernández R. 2024. Supplemental greenhouse lighting increased the water use efficiency, crop growth, and cutting production in Cannabis sativa. Frontier in Plant Science, 15,1371702.

Darwin K H, Stanley S A. 2022. The aldehyde hypothesis: metabolic intermediates as antimicrobial effectors. Open Biology, 12, 220010.

Elfalleh W, Nasri N, Marzougui N, Thabti I, M'rabet A, Yahya Y, Lachiheb B, Guasmi F, Ferchichi A. 2009. Physico-chemical properties and DPPH-ABTS scavenging activity of some local pomegranate (Punica granatum) ecotypes. International Journal of Food Science and Nutrition, 60, 197−210.

Escobar-Bravo R, Ruijgrok J, Kim H K, Grosser K, Van Dam N M, Klinkhamer P G L, Leiss K A. 2018. Light intensity-mediated induction of trichome-associated allelochemicals increases resistance against thrips in Tomato. Plant Cell Physiology, 59, 2462−2475.

Fan P, Huber D J, Su Z, Hu M, Gao Z, Li M, Shi X, Zhang Z. 2018. Effect of postharvest spray of apple polyphenols on the quality of fresh-cut red pitaya fruit during shelf life. Food Chemistry, 243, 19−25.

Feng X, Han L, Chao D, Liu Y, Zhang Y, Wang R, Guo J, Feng R, Xu Y, Ding Y, Huang B, Zhang G. 2017. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. Journal of Hazardous Material, 331, 246−256.

Galvão V C, Fankhauser C. 2015. Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology, 34, 46−53.

Hamdani S, Khan N, Perveen S, Qu M N, Jiang J J, Govindjee, Zhu X G. 2019. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. Photosynthesis Research, 139, 107−121.

He R, Wei J, Zhang J, Tan X, Li Y, Gao M, Liu H. 2022. Supplemental blue light frequencies improve ripening and nutritional qualities of tomato fruits. Frontiers in Plant Science, 13, 888976.

He Y, Tang Y, Song S, Li L, An S, Zhou G, Zhu J, Li S, Yin Y, Jeyaraj A, Peng C, Li X, Zeng G. 2025. Effect of blue light intensity during spreading on the aroma of green tea. Foods, 14(8),1308.

Hong Y, Zheng Q, Cheng L, Liu P, Xu G, Zhang H, Cao P, Zhou H. 2023. Identification and characterization of TMV-induced volatile signals in Nicotiana benthamiana: evidence for JA/ET defense pathway priming in congeneric neighbors via airborne (E)-2-octenal. Functional and Integrative Genomics, 23, 272.

Hua Q, Chen C, Tel Zur N, Wang H, Wu J, Chen J, Zhang Z, Zhao J, Hu G, Qin Y. 2018. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiology Biochemistry, 126, 117−125.

Ikeda H, Shibuya T, Imanishi S, Aso H, Nishiyama M, Kanayama Y. 2016. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, IL8-3. Plant Cell Physiology, 57, 1257−1270.

Jiang Y L, Liao Y Y, Lin T S, Lee C L, Yang W J. 2012. The photoperiod-regulated bud formation of red Pitaya (Hylocereus sp.). Hortscience, 47(8), 1063−7.

Jing G, Li T, Qu H, Yun Z, Jia Y, Zheng X, Jiang Y. 2015. Carotenoids and volatile profiles of yellow- and red-fleshed papaya fruit in relation to the expression of carotenoid cleavage dioxygenase genes. Postharvest Biology and Technology, 109, 114−119. 

Kala S, Ammani K. 2017. GC-MS analysis of biologically active compounds in Canthium parviflorum Lam. leaf and callus extracts. International Journal of Chemtech Research, 10, 1039−1058.

Kang C Q, Zhang Y Q, Cheng R F, Kaiser E, Yang Q C, Li T. 2021. Acclimating cucumber plants to blue supplemental light promotes growth in full sunlight. Frontiers in Plant Science, 12, 782465.

Keswani T, Obeidallah A, Nieves E, Sidoli S, Fazzari M, Taylor T, Seydel K, Daily J P. 2022.  Pipecolic acid, a putative mediator of the encephalopathy of cerebral malaria and the experimental model of cerebral malaria. Journal of Infectious Diseases, 225, 705−714.

Lashgari N A, Roudsari N M, Momtaz S, Abdolghaffari A H, Atkin S L, Sahebkar A. 2023. Regulatory mechanisms of vanillic acid in cardiovascular diseases: A Review. Current Medicinal Chemistry, 30, 2562−2576.

Li C X, Chang S X, Khalil-Ur-Rehman M, Xu Z G, Tao J M. 2017. Effect of irradiating the leaf abaxial surface with supplemental light-emitting diode lights on grape photosynthesis. Australian Journal of Grape and Wine Research, 23, 58–65.

Li J, Khan Z U, Tao X, Mao L, Luo Z, Ying T. 2017. Effects of exogenous auxin on pigments and primary metabolite profile of postharvest tomato fruit during ripening. Scientia Horticulturae, 219, 90−97.

Ling S, Zhang H. 2013. Influences of chlorpyrifos on antioxidant enzyme activities of Nilaparvata lugens. Ecotoxicology Environmental Safety, 98, 187−90.

Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa Y, Yahata M, Ikoma Y, Matsumoto H. 2012. Effect of blue and red LED light irradiation on beta-cryptoxanthin accumulation in the flavedo of citrus fruits. Journal of agriculture and food chemistry, 60, 197−201. 

Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa Y, Yahata M, Matsumoto H. 2015. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Postharvest Biology and Technology, 99, 99−104. 

Matan N, Puangjinda K, Phothisuwan S, Nisoa M. 2015. Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control, 50, 291−296. 

Mizrahi Y, Nerd A, Sitrit Y. 2002. New fruit for arid climates, Trends in new crops and new uses. In: Proceedings of the Fifth National Symposium, Janick, J (eds). ASHS Press, 378−384.

Nagy F, Schäfer E. 2002. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annual Review of Plant Biology, 53, 329−355.

Nerd A, Mizrahi Y. 2010. Reproductive biology of cactus fruit crops. In: Horticultural Reviews, Oxford: Wiley, 18, 321−346.

Ni J, Liao Y, Zhang M, Pan C, Yang Q, Bai S, Teng Y. 2022. Blue light simultaneously induces peel anthocyanin biosynthesis and flesh carotenoid/sucrose biosynthesis in mango fruit. Journal of Agricultural and Food Chemistry, 70, 16021–16035.

Nobel P S, Barrera E D L. 2004. CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. Annals of Applied Biology, 144, 1−8.

Paponov M, Kechasov D, Lacek J, Verheul M J, Paponov I A. 2020. Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Frontiers in Plant Science, 10, 1656.

Qian C, Quan W, Xiang Z, Li C. 2019. Characterization of volatile compounds in four different rhododendron flowers by GC×GC-QTOFMS. Molecules, 24, 3327.

Song H, Chu Q, Xu D, Xu Y, Zheng X. 2016. Purified Betacyanins from Hylocereus undatus Peel ameliorate obesity and insulin resistance in high-fat-diet-fed mice. Journal of Agricultural and Food Chemistry, 64(1), 236−44.

Suh D H, Lee S, do Heo Y, Kim Y S, Cho S K, Lee S, Lee C H. 2014. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. Journal of Agricultural and Food Chemistry, 62(34), 8764−71.

Tanapichatsakul C, Monggoot S, Gentekaki E, Pripdeevech P. 2017. Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Current Microbiololy, 75, 476−483.

Tao X, Wu Q, Aalim H, Li L, Mao L, Luo Z, Ying T. 2020. Effects of exogenous abscisic acid on bioactive components and antioxidant capacity of postharvest tomato during ripening. Molecules, 25, 1346.

Tehreem TMuhammad AHumna AMirza I SRukhsana T, Areeba A. 2019. Medicinal importance of azo and hippuric acid derivatives. Mini-reviews In Medicinal Chemistry, 19, 708−719.

Terzaghi W B, Cashmore A R. 1995. Photomorphogenesis. Seeing the light in plant development. Current Biology, 5, 466−468. 

Wang W, Liu D, Qin M, Xie Z, Chen R, Zhang Y. 2021. Effects of supplemental lighting on potassium transport and fruit coloring of tomatoes grown in Hydroponics. International Journal of Molecular Sciences, 22(5), 2687.

Wang Y, Liu X J, Chen J B, Cao J P, Li X, Sun C D. 2022. Citrus flavonoids and their antioxidant evaluation. Critical Reviews in Food Science and Nutrition, 62, 3833−3854.

Wessler C F, Weiland M, Einfeldt S, Wiesner-Reinhold M, Schreiner M, Neugart S. 2025. The effect of supplemental LED lighting in the range of UV, blue, and red wavelengths at different ratios on the accumulation of phenolic compounds in pak choi and swiss chard. Food Research International, 200, 115438.

Wu B S, Mansoori M, Trumpler K, Addo P W, MacPherson S, Lefsrud M. 2023. Effect of amber (595 nm) light supplemented with narrow blue (430 nm) light on tomato biomass. Plants (Basel). 12, 2457.

Wu L C, Hsu H W, Chen Y C, Chiu C C, Lin Y I, Ho J A. 2006. Antioxidant and antiproliferative activities of red pitaya. Food chemistry, 95, 319−327. 

Wu Q X, Zhou Y J, Zhang Z K, Li T T, Jiang Y M, Gao H J, Yun Z. 2020. Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biology and Technology, 160−172.

Wu Q, Gao H, You Z, Zhang Z, Zhu H, He M, He J, Duan X, Jiang Y, Yun Z. 2023. Multiple metabolomics comparatively investigated the pulp breakdown of four dragon fruit cultivars during postharvest storage. Food Research International, 164, 112410.

Wu Q, Gao H, Zhang Z, Li T, Qu H, Jiang Y, Yun Z. 2020. Deciphering the metabolic pathways of pitaya peel after postharvest red light irradiation. Metabolites, 10, 108−127.

Xiao L, Shibuya T, Watanabe T, Kato K, Kanayama Y. 2022. Effect of light quality on metabolomic, ionomic, and transcriptomic profiles in tomato fruit. International Journal of Molecular Science, 23, 13288.

Xiong R, Liu C L, Xu M, Wei S S, Huang J Q, Tang H. 2020. Transcriptomic analysis of flower induction for long-day pitaya by supplementary lighting in short-day winter season. BMC Genomics, 21(1), 329−345.

Yamaga I, Shirai Y, Nakajima T, Kobayashi Y. 2016. Rind color development in satsuma mandarin fruits treated by low-intensity red light-emitting diode (LED) irradiation. Food Science and Technology Research, 22, 59−64. 

Yang J, Li C, Kong D, Guo F, Wei H. 2020. Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Frontiers in Plant Science,11, 601478.

Yu A N, Yang Y N, Yang Y, Zheng F P, Sun B G. 2019. Free and bound volatile compounds in the rubus coreanus fruits of different ripening stages. Journal of Food Biochemistry, 43, 12964.

Zhang P, Lu S, Liu Z, Zheng T, Dong T, Jin H, Jia H, Fang J. 2021. Transcriptomic and metabolomic profiling reveals the effect of LED light quality on fruit ripening and anthocyanin accumulation in cabernet sauvignon grape. Frontiers in Nutrition, 8, 790697.

Zhang Y, Kaiser E, Zhang Y, Yang Q C, Li T. 2019. Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). Physiologia Plantarum, 167, 144−158.

Zhang Y, Li S, Deng M, Gui R, Liu Y, Chen X, Lin Y, Li M, Wang Y, He W, Chen Q, Zhang Y, Luo Y, Wang X, Tang H. 2022. Blue light combined with salicylic acid treatment maintained the postharvest quality of strawberry fruit during refrigerated storage. Food Chemistry X, 15, 100384.

Zhu F, Yun Z, Ma Q, Gong Q, Zeng Y, Xu J, Cheng Y, Deng X. 2015. Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biology and Technology, 100, 8−15. 

[1] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[2] Xiaolong Wang, Xuedong Shao, Zhengwen Zhang, Xiaomin Zhong, Xiaohao Ji, Xiangbin Shi, Chang Liu, Zhiqiang Wang, Fengzhi Liu, Haibo Wang. Multi-nutrient fertilization-based analysis of fruit quality and mineral element composition during fruit development in Merlot wine grapevines[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1503-1514.
[3] Denghai Yang, Hengzhe Fan, Ruyi Hu, Yong Huang, Chengwang Sheng, Haiqun Cao, Bin Yang, Xingchuan Jiang. Characterization of core maize volatiles induced by Spodoptera frugiperda that alter the mating-mediated approach–avoidance behaviors of Mythimna separata[J]. >Journal of Integrative Agriculture, 2025, 24(2): 655-667.
[4] Xiaowei Cai, Ling Xiao, Xiangmei Nie, Qiandong Hou, Sulin Wen, Kun Yang, Xiaopeng Wen. HpFBH3 transactivates HpCO7 via binding to the E-boxes in the promoter and may accelerate flower formation in pitaya[J]. >Journal of Integrative Agriculture, 2025, 24(2): 575-593.
[5] Jialing Fu, Qingjiang Wu, Xia Wang, Juan Sun, Li Liao, Li Li, Qiang Xu. A novel histone methyltransferase gene CgSDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2633-2648.
[6] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[7] LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. >Journal of Integrative Agriculture, 2022, 21(3): 725-735.
[8] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[9] ZHU Shi-ping, HUANG Tao-jiang, YU Xin, HONG Qi-bin, XIANG Jin-song, ZENG An-zhong, GONG Gui-zhi, ZHAO Xiao-chun. The effects of rootstocks on performances of three late-ripening navel orange varieties[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1802-1812.
[10] LI Xiang, ZHANG Xiu-ge, XIAO Chun, GAO Yu-lin, DONG Wen-xia.
Behavioral responses of potato tuber moth (Phthorimaea operculella) to tobacco plant volatiles
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 325-332.
[11] WANG Hong-min, BAI Peng-hua, ZHANG Jing, ZHANG Xue-min, HUI Qin, ZHENG Hai-xia, ZHANG Xian-hong. Attraction of bruchid beetles Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) to host plant volatiles[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3035-3044.
[12] JI Xiao-hao, WANG Bao-liang, WANG Xiao-di, SHI Xiang-bin, LIU Pei-pei, LIU Feng-zhi, WANG Hai-bo. Effects of different color paper bags on aroma development of Kyoho grape berries[J]. >Journal of Integrative Agriculture, 2019, 18(1): 70-82.
[13] LU Yan-hui, LIU Kai, ZHENG Xu-song, LÜ Zhong-xian. Electrophysiological responses of the rice striped stem borer Chilo suppressalis to volatiles of the trap plant vetiver grass (Vetiveria zizanioides L.)[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2525-2533.
[14] ZHENG Yong-qiang, YANG Qiong, JIA Xue-mei, LIU Yan-mei, HE Shao-lan, DENG Lie, XIE Rang-jin, YI Shi-lai, Lü Qiang . Ca(NO3)2 canopy spraying during physiological fruit drop period has a better influence on the tree character and fruit quality of Newhall navel orange (Citrus sinensis Osbeck)[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1513-1519.
[15] Dirceu Mattos Jr, Franz W R Hippler, Rodrigo M Boaretto, Eduardo S Stuchi, José A Quaggio . Soil boron fertilization: The role of nutrient sources and rootstocks in citrus production[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1609-1616.
No Suggested Reading articles found!