Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Systematic characterization of the N-terminal acetyltransferase gene family reveals that OsNAA30 regulates plant height and tillering in rice

Yibin Wang, Haoran Wang, Lu Sun, Xiangchao Kong, Chunjing Nie, Xingjun Li, Yihan Wang, Pingli Lu#

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

N-末端乙酰转移酶(N-terminal acetyltransferases,NATs)通过介导蛋白质N-末端乙酰化修饰(N-terminal acetylationNTA),在植物生长发育中发挥重要调控作用。尽管已部分研究揭示了其功能重要性,水稻中NATs的系统性研究仍相对有限。本研究在籼稻中鉴定到14OsNAA基因,它们不均匀分布12条染色体。系统进化和保守结构域分析显示,OsNAT基因家族可划分为多个进化分支,各分支具有保守的结构特征。启动子分析表明,OsNAA基因含有丰富的逆境响应和生长相关的顺式作用元件,与在营养生长期和生殖生长阶段特异性表达模式相一致。同时,多个OsNAA基因低温、干旱、盐和高温胁迫下表达显著上调;赤霉素(Gibberellin,GA也可诱导特定OsNAA基因在幼苗发育期的表达。共线性分析结果显示,片段重复和单基因重复事件是驱动OsNAT基因家族扩张的主要机制。功能分析表明OsNAA30定位于细胞核和细胞质,并在体外表现出NatC类型的N末端乙酰转移酶活性。OsNAA30突变导致水稻株高降低分蘖数减少茎节细胞伸长受进一步机制研究表明,OsNAA30可能通过抑制赤霉素代谢基因及株高分蘖相关细胞周期基因的表达,影响水稻生长发育。单倍型分析发现OsNAA30的自然变异与株高、茎长和分蘖数量显著相关,表明OsNAA30可能参与水稻株型的区域适应性调控。综上所述,本研究系统解析了水稻OsNAT基因家族的进化和表达特征,并揭示OsNAA30作为水稻分子育种潜在遗传改良靶点。



Abstract  

N-terminal acetyltransferases (NATs) fundamentally regulate plant growth and development through protein N-terminal acetylation (NTA), a crucial post-translational modification.  Although their functional importance is recognized, systematic characterization of NATs remains unexplored in Oryza sativa.  This study identified 14 OsNAA genes distributed non-uniformly across 12 chromosomes in japonica rice.  Phylogenetic analysis combined with conserved domain studies revealed distinct evolutionary clades of OsNAT catalytic subunits with preserved structural architectures.  Analysis of promoter regions identified a prevalence of stress-responsive and growth-related cis-elements, corresponding to developmental stage-specific expression patterns throughout vegetative and reproductive phases.  Several OsNAA genes exhibited substantial transcriptional responses to cold, drought, NaCl, and heat stresses.  Furthermore, gibberellin (GA) promotes the upregulation of specific OsNAA genes during seedling development.  Collinear analysis demonstrated that segmental and singleton duplication events drive the expansion of the OsNAT family.  Functional characterization revealed that OsNAA30 localizes to the nucleus and cytoplasm, displaying canonical NatC activity in vitro.  Deletion of OsNAA30 led to reduced plant height and fewer tillers, accompanied by decreased cell elongation in the stem internodes.  OsNAA30 appears to regulate rice growth by suppressing the expression of GA catabolism genes and cell cycle regulators of plant height and tillering.  Additionally, analysis of the OsNAA30 haplotype links this gene to variations in plant height, culm length, and tiller number, indicating that the OsNAA30 locus may have influenced the local adaptation of plant architecture.  This research provides essential insights into the OsNAT gene family and establishes OsNAA30 as a valuable genetic target for molecular breeding in rice.

Keywords:  N-terminal acetyltransferases       gene family       phylogenetic analysis       OsNAA30       plant height       tillering  
Online: 23 September 2025  
Fund: 

This work was supported by research grants from the National Key Research and Development Program of China (2021YFA1300401) and the National Natural Science Foundation of China (32170356).  We also obtained a fund to support this work from Major Program of Science & Technology of Henan, China (21110010100).

About author:  Yibin Wang, E-mail: wangyb@henu.edu.cn; #Correspondence, E-mail: pinglilu@henu.edu.cn

Cite this article: 

Yibin Wang, Haoran Wang, Lu Sun, Xiangchao Kong, Chunjing Nie, Xingjun Li, Yihan Wang, Pingli Lu. 2025. Systematic characterization of the N-terminal acetyltransferase gene family reveals that OsNAA30 regulates plant height and tillering in rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.025

Aksnes H, Hole K, Arnesen T. 2015. Molecular, cellular, and physiological significance of N-terminal acetylation. International Review of Cell and Molecular Biology, 316, 267–305.

Aksnes H, Ree R, Arnesen T. 2019. Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases. Molecular Cell, 73, 1097–1114.

Armbruster L, Linster E, Boyer J B, Brünje A, Eirich J, Stephan I, Bienvenut W V, Weidenhausen J, Meinnel T, Hell R, Sinning I, Finkemeier I, Giglione C, Wirtz M. 2020. NAA50 is an enzymatically active N (α)-acetyltransferase that is crucial for development and regulation of stress responses. Plant Physiology, 183, 1502–1516.

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger, H. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40, W597-W603.

Bailey T L, Johnson J, Grant C E, Noble W S. 2015. The MEME suite. Nucleic Acids Research, 43, W39-W49.

Bolser D M, Staines D M, Perry E, Kersey P J. 2017. Ensembl plants: Integrating tools for visualizing, mining, and analyzing plant genomic data. Methods in Molecular Biology, 1533, 1–31.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: A ‘one for all, all for one’ bioinformatics platform for biological big-data mining. Molecular Plant, 16, 1733–1742.

Chen H, Li S, Li L, Wu W, Ke X, Zou W, Zhao J. 2018. Nα-Acetyltransferases 10 and 15 are required for the correct initiation of endosperm cellularization in Arabidopsis. Plant & Cell Physiology, 59, 2113–2128.

Chen J, Zeng H, Yan F, Jiang Z, Chen J, Wang W, Zhu Q. 2025. Identification of the WRKY gene family in Bergenia purpurascens and functional analysis of BpWRKY13 under cold stress. Plant Physiology and Biochemistry, 223, 109832.

Cheng M, Yuan H, Wang R, Zou J, Liang T, Yang F, Li S. 2021. Genome-wide identification and analysis of the metallothionein genes in Oryza genus. International Journal of Molecular Sciences, 22, 9651.

Damme P, Osberg C, Jonckheere V, Glomnes N, Gevaert K, Arnesen T, Aksnes H. 2023. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. The Journal of Biological Chemistry, 299, 102824.

Demir F, Niedermaier S, Kizhakkedathu J N, Huesgen P F. 2017. Protein terminal profiling. Methods in Molecular Biology, 1574, 9–15.

Deng S, Gardner S M, Gottlieb L, Pan B, Petersson E J, Marmorstein R. 2023. Molecular role of NAA38 in thermostability and catalytic activity of the human NatC N-terminal acetyltransferase. Structure, 31, 166-173.

Deng S, Magin R S, Wei X, Pan B, Petersson E J, Marmorstein R. 2019. Structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 complex. Structure, 27, 1057-1070.

Deng S, Marmorstein R. 2021. Protein N-terminal acetylation: Structural basis, mechanism, versatility, and regulation. Trends in Biochemical Sciences, 46, 15–27.

Drazic A, Myklebust LM, Ree R, Arnesen T. 2016. The world of protein acetylation. Biochimica et Biophysica Acta, 1864, 1372–1401.

Drazic A, Varland S. 2021. Human NAA30 can rescue yeast mak3∆ mutant growth phenotypes. Bioscience Reports, 41, BSR20202828.

Ellgaard L, McCaul N, Chatsisvili A, Braakman I. 2016. Co-and post-translational protein folding in the ER. Traffic, 17, 615–638.

Feng J, Li R, Yu J, Ma S, Wu C, Li Y, Cao Y, Ma L. 2016. Protein N-terminal acetylation is required for embryogenesis in Arabidopsis. Journal of Experimental Botany, 67, 4779–4789.

Feng J, Qin M, Yao L, Li Y, Han R, Ma L. 2022. The N-terminal acetyltransferase Naa50 regulates tapetum degradation and pollen development in Arabidopsis. Plant Science , 316, 111180.

Finn R D, Clements J, Eddy S R. 2011. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39, W29-37.

Gao Y, Bu C, Chen P, Hao X, Zhang R, Wang M, Du L, Zhang D, Song Y. 2025. The dual-action evolutionarily conserved NatB catalytic subunit NAA20 regulates poplar root development in response to salt and osmotic stresses. Journal of Integrative Plant Biology, 67, 1208-1210.

Gautschi M, Just S, Mun A, Ross S, Rücknagel P, Dubaquié Y, Ehrenhofer-Murray A, Rospert S. 2003. The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Molecular and Cellular Biology, 23, 7403–7414.

Giglione C, Meinnel T. 2021. Evolution-driven versatility of N terminal acetylation in photoautotrophs. Trends in Plant Science, 26, 375–391.

Gong X, Huang Y, Liang Y, Yuan Y, Liu Y, Han T, Li S, Gao H, Lv B, Huang X, Linster E, Wang Y, Wirtz M, Wang Y. 2022. OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. Molecular Plant, 15, 740–754.

Gottlieb L, Marmorstein R. 2018. Structure of human NatA and its regulation by the huntingtin interacting protein HYPK. Structure, 26, 925-935.

Grunwald S, Hopf L M, Bock-Bierbaum T, Lally C M, Spahn C T, Daumke O. 2020. Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates. Nature Communications, 11, 5506.

Guo S, Dai S, Singh P K, Wang H, Wang Y, Tan J L, Wee W, Ito T. 2018. A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa. Frontiers in Plant Science, 9, 1–9.

He Q, Wu H, Zeng L, Yin C, Wang L, Tan Y, Lv W, Liao Z, Zheng X, Zhang S, Han Q, Wang D, Zhang Y, Xiong G, Wang Q. 2024. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6. The Plant Cell, 37, 276.

Huang J, Xie B, Xian F, Liu K, Yan Q, He Y, Zhu L, Liu W, Jiang Y, Chen Y, Peng l, Zhou Y, Hu J. 2025. Gibberellin signalling mediates nucleocytoplasmic trafficking of Sucrose Synthase to regulate the drought tolerance in rice. Plant Biotechnology Journal, 23, 1909.

Huber M, Bienvenut W V, Linster E, Stephan I, Armbruster L, Sticht C, Layer D, Lapouge K, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. 2020. NatB-mediated N-terminal acetylation affects growth and biotic stress responses. Plant Physiology, 182, 792–806.

Jiang Y, Liu X, Zhou M, Yang J, Ke S, Li Y. 2022. Genome-wide identification of the agc protein kinase gene family related to photosynthesis in rice (Oryza sativa). International Journal of Molecular Sciences, 23, 12557.

Krtenic B, Drazic A, Arnesen T, Reuter N. 2020. Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. Plos Computational Biology, 16, e1007988.

Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. 2024. MEGA12: Molecular evolutionary genetic analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41, 263.

Li L L, Xiao Y, Wang B, Zhuang Y, Chen Y, Lu J, Lou Y, Li R. 2024. A frameshift mutation in JAZ10 resolves the growth versus defense dilemma in rice. Proceedings of the National Academy of Sciences of the United States of America, 121, e2413564121.

Li N, Zhang D S, Liu H S, Yin C S, Li X, Liang W, Yuan Z, Xu B, Chu H W, Wang J, Wen T, Huang H, Luo D, Ma H, Zhang D. 2006. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell, 18, 2999–3014.

Linster E, Layer D, Bienvenut W V., Dinh T V, Weyer F A, Leemhuis W, Brünje A, Hoffrichter M, Miklankova P, Kopp J, Lapouge K, Sindlinger J, Schwarzer D, Meinnel T, Finkemeier I, Giglione C, Hell R, Sinning I, Wirtz M. 2020. The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. New Phytologist, 228, 554–569.

Linster E, Wirtz M. 2018. N-terminal acetylation: An essential protein modification emerges as an important regulator of stress responses. Journal of Experimental Botany, 69, 4555–4568.

Liu H Q, Pu Z X, Di D W, Zou Y J, Guo Y M, Wang J L, Zhang L, Tian P, Fei Q H, Li X F, Khaskheli J, Wu L, Guo G Q. 2022. Significance of NatB-mediated N-terminal acetylation of auxin biosynthetic enzymes in maintaining auxin homeostasis in Arabidopsis thaliana. Communications Biology, 5, 1410.

Liu W, Tian X, Feng Y, Hu J, Wang B, Chen S, Liu D, Liu Y. 2023. Genome-wide analysis of bHLH gene family in coptis chinensis provides insights into the regulatory role in benzylisoquinoline alkaloid biosynthesis. Plant Physiology and Biochemistry, 201, 107846.

Liu X, Zhang F, Xun Z, Shao J, Luo W, Jiang X, Wang J, Wang J, Li S, Lin Q, Ren Y, Zhao H, Cheng Z, Wan J. 2024. The OsNL1-OsTOPLESS2-OsMOC1/3 pathway regulates high-order tiller outgrowth in rice. Plant Biotechnology Journal, 23, 900–910.

Lyon G J. 2019. From molecular understanding to organismal biology of N-terminal acetyltransferases. Structure, 27, 1053–1055.

Ma F, Liu M, Yan P, He S, Hu J, Zhang X, Niu F, Cui J, Yuan X, Xin X, Cao L, Yang J, Wang Y, Luo X. 2024. Multi-genome evolutionary study of the ABC1 gene family and identification of the pleiotropic effects of OsABC1-13 in rice development. The Crop Journal, 12, 1022–1030.

Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F. 2012. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63, 305–317.

Marchler-Bauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, He S, Hurwitz D, Jackson J, Ke Z, Lanczycki C, Liebert C, Liu C, Liu F, Liu S, et al. 2011. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Research, 39, D225-D229.

McTiernan N, Kjosås I, Arnesen T. 2025. Illuminating the impact of N-terminal acetylation: From protein to physiology. Nature Communications, 16, 703.

Miklánková P, Linster E, Boyer J B, Weidenhausen J, Mueller J, Armbruster L, Lapouge K, Torre C, Bienvenut W, Sticht C, Mann M, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. 2022. HYPK promotes the activity of the Nα-acetyltransferase a complex to determine proteostasis of nonAc-X2/N-degron-containing proteins. Science Advances, 8, 1–13.

Mughal A A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, Ahmed M S, Murrell W, Vik-Mo E O, Langmoen I A, Stangeland, B. 2015. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Molecular Cancer, 14, 160.

Neubauer M, Innes R W. 2020. Loss of the acetyltransferase NAA50 induces endoplasmic reticulum stress and immune responses and suppresses growth. Plant Physiology, 183,1838–1854.

Nguyen L T, Schmidt H A, von Haeseler A, Minh B Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

Niu M X, Feng C H, Liu M, Liu X, Liu S, Liu C, Yin W, Xia X. 2024. Genome-wide identification of poplar GSTU gene family and its PtrGSTU23 and PtrGSTU40 to improve salt tolerance in poplar. Industrial Crops and Products, 209, 117945.

Peng H, Wang K, Chen Z, Cao Y, Gao Q, Li Y, Li X, Lu H, Du H, Lu M, Yang X, Liang C. 2020. MBKbase for rice: An integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Research, 48, D1085–D1092.

Ree R, Varland S, Arnesen T. 2018. Spotlight on protein N-terminal acetylation. Experimental & Molecular Medicine, 50, 1–13.

Shaheen A, Li Z, Yang Y, Xie J, Zhu L, Li C, Nie F, Wang M, Wang Y, Rasheed A, Hao L, Zhou Y, Song C P. 2025. Genetic regulation of wheat plant architecture and future prospects for its improvement. New Crops, 2, 100048.

Starheim K K, Gromyko D, Evjenth R, Ryningen A, Varhaug J E, Lillehaug J R, Arnesen T. 2009. Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Molecular and Cellular Biology, 29, 3569–3581.

Sun K, Huang M, Zong W, Xiao D, Lei C, Luo Y, Song Y, Li S, Hao Y, Luo W, Xu B, Guo X, Wei G, Chen L, Liu Y, Guo J. 2022. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits. Journal of Genetics and Genomics, 49, 437–447.

Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y. 2023. SRplot: A free online platform for data visualization and graphing. PLoS ONE, 18, e0294236.

Varland S, Myklebust L M, Goksøyr S Ø, Glomnes N, Torsvik J, Varhaug J E, Arnesen T. 2018. Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30. Gene, 644, 27–37.

Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. 2024. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. The Plant Cell, 36, 298–323.

Wang Y, Li Y, Zhou H, Huang T, Wang Y, Fan M, Guo L, Fu M, Sun L, Hao F. 2025. Comprehensive analysis of amino acid/auxin permease family genes reveal the positive role of GhAAAP128 in cotton tolerance to cold stress. International Journal of Biological Macromolecules, 290, 138882.

Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49.

Weyer F A, Gumiero A, Lapouge K, Bange G, Kopp J, Sinning I. 2017. Structural basis of HYPK regulating N-terminal acetylation by the NatA complex. Nature Communications, 8, 15726.

Wu M, Zhou J, Li Q, Quan D, Wang Q, Gao Y. 2024. Auxin–brassinosteroid crosstalk: Regulating rice plant architecture and grain shape. The Crop Journal, 12, 953–963.

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2, 100141.

Xie L, Liu M, Zhao L, Cao K, Wang P, Xu W, Sung W K, Li X, Li G. 2021. RiceENCODE: A comprehensive epigenomic database as a rice Encyclopedia of DNA Elements. Molecular Plant, 14, 1604–1606.

Xing H, Wang H, Huang Y, Ma X, Wu S, Li Y, Sun C, Sun H. 2025. FZP modulates tillering via OsMADS57 in rice. Plant Biotechnology Journal, 23, 1202–1212.

Yao Y, Li X, Chen W, Liu H, Mi L, Ren D, Mo A, Lu P. 2020. ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid recombination in Arabidopsis. Frontiers in Plant Science, 11, 839.

Yin W, Dong N, Li X, Yang Y, Lu Z, Zhou W, Qian Q, Chu C, Tong H. 2025. Understanding brassinosteroid-centric phytohormone interactions for crop improvement. Journal of Integrative Plant Biology67, 563–581.

Yu R, Liu J, Yang X, Wang J, Wang Y. 2025. Comprehensive genome-wide characterization of calmodulin-binding protein 60 gene family reveals PtCBP60E1 enhances the pathogen resistance in poplar. Industrial Crops and Products, 226, 120601.

Yu Y, Zhang H, Long Y, Shu Y, Zhai J. 2022. Plant Public RNA-seq Database: A comprehensive online database for expression analysis of ~45 000 plant public RNA-Seq libraries. Plant Biotechnology Journal, 20, 806–808.

[1] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[2] Hongchen Jia, Youwei Du, Yuanyuan Liu, Shuanghong Wang, Yan Wang, Sadia Noorin, Mark L. Gleason, Rong Zhang, Guangyu Sun. Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker [J]. >Journal of Integrative Agriculture, 2025, 24(3): 1108-1125.
[3] Chunyan He, Fangyun Cheng. PrDA1-1 and its interacting proteins PrTCP1/PrTCP9 in flare tree peony affect yield by regulating seed weight and number[J]. >Journal of Integrative Agriculture, 2025, 24(2): 610-622.
[4] Meiyu Li, Liyun Mao, Shuang Song, Decang Kong, Ming Cao, Lijun Jiao, Wenhao Bo, Xiaoming Pang. Functional insights into the FW2.2-like gene family in Chinese jujube: Identification, characterization, and impact of ZjFWL10 variants on fruit size and plant height[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3880-3894.
[5] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[6] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[7] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

[8] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[9] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[10] LIU Yan, WANG Wei-ping, ZHANG Lin, ZHU Long-fu, ZHANG Xian-long, HE Xin. The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2015-2024.
[11] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[12] Gulzhan N. YESSEMBEKOVA, XIAO Shuang, Assem ABENOV, Talgat KARIBAEV, Alexandr SHEVTSOV, Amirgazin ASYLULAN, Yersyn Y. MUKHANBETKALIYEV, SHUAI Lei, BU Zhi-gao, Sarsenbay K. ABDRAKHMANOV. Molecular epidemiological study of animal rabies in Kazakhstan[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1266-1275.
[13] WANG Deng-feng, YANG Xue-yun, WEI Yu-rong, LI Jian-jun, BOLATI Hongduzi, MENG Xiao-xiao, TUERXUN Gunuer, NUERDAN Nuerbaiheti, WU Jian-yong. Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates[J]. >Journal of Integrative Agriculture, 2023, 22(3): 872-880.
[14] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
[15] Asad RIAZ, Ahmad M. ALQUDAH, Farah KANWAL, Klaus PILLEN, YE Ling-zhen, DAI Fei, ZHANG Guo-ping. Advances in studies on the physiological and molecular regulation of barley tillering[J]. >Journal of Integrative Agriculture, 2023, 22(1): 1-13.
No Suggested Reading articles found!