Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The VmCarEs-6 gene in the Therioaphis trifolii(Monell) enhances pesticide sensitivity by inhibiting detoxification metabolism

Haoyang Hao1, 2, Kaihui Zhu1, 3,Xianfeng Yin1, Shaodan Wang1, 2, Xu Liu1 , Dejun Li1, 2, Chunmei Yang1, Zehua Zhang4, Mark. Richard NcNeill5, Shali Yasen2#, Xiongbing Tu1#

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Key Laboratory of Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang Uygur Autonomous Region, China

3 Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China

4 Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Xinjiang, 831100, China

5 AgResearch Ltd., Lincoln Research Centre, Cnr Springs Rd and GeraldSt, Lincoin 7608, Canterbury New Zealand

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

杀虫剂的长期过度使用导致了显著的环境影响和昆虫抗药性的进化。 羧酸酯酶(CarEs)作为解毒代谢关键酶类,与害虫抗药性形成密切相关。本研究基于苜蓿斑蚜逆胁迫转录组数据筛选并克隆了VmCarEs-6基因,通过RNA干扰和抑制剂处理VmCarEs-6,检测苜蓿斑蚜应对化学农药的敏感性。通过ProtParam软件分析显示,VmCarEs-6基因编码564个氨基酸,具有多样化结构域;其表达具有时空特异性,3龄若蚜及胸部组织表达量最高,无翅成蚜表达显著高于有翅型。室内生测结果显示,暴露于高效氯氟氰菊酯、异丙威、辛硫磷和吡虫啉LC50浓度后,苜蓿斑蚜体内VmCarEs-6表达显著上调。利用星形阳离子聚合物(star polycationSPc)包裹双链RNA干扰VmCarEs-6基因后,高效氯氟氰菊酯LCT异丙威(IPC)、辛硫磷PHX吡虫啉(IMI处理后蚜虫的死亡率较对照组分别增加35.6%23.4%31.1%23.3%;羧酸酯酶抑制剂TPP与上述种杀虫剂联用表现出增效作用,增效倍数分别提升1.541.281.241.17,与RNAi结果一致。田间试验结果表明,在施药后第5天,与单用化学农药相比,LCT+TPPIPC+TPPPHX+TPPIMI+TPP混用防治效果分别提高了35.6%21.5%46.0%70.1%与室内生测结果一致。因此,通过RNA干扰和TPP处理对苜蓿斑蚜VmCarEs-6基因进行功能抑制,显著削弱了害虫的解毒代谢能力,进而提高了害虫的应对化学农药的敏感性,为解析刺吸式害虫抗药性机制与开发靶向防控产品提供了理论依据。



Abstract  

The long-term overuse of insecticides has accelerated the evolutionary development of insect resistance. In this process, carboxylesterases as pivotal enzymes in detoxification metabolism, play a critical role in the formation of pest resistance, with their enhanced activity and altered expression levels being closely associated with the development of resistance mechanisms. In this study, the VmCarEs-6 gene was screened and cloned based on the transcriptomic data of Therioaphis trifolii under reverse stress conditions. The aim was to investigate the role of this gene in the sensitivity of T. trifolii to chemical pesticides through RNA interference and inhibitor treatments. Indoor bioassay results demonstrated that exposure to LC50 concentrations of lambda-cyhalothrin (LCT), isoprocarb (IPC), phoxim (PHX), and imidacloprid (IMI) significantly upregulated the expression of the VmCarEs-6 gene in T. trifolii. Following RNAi-mediated silencing of VmCarEs-6 using star polycation (SPc)-encapsulated double-stranded RNA, the mortality rates of aphids treated with the four insecticides increased by 35.6, 23.4, 31.1, and 23.3%, respectively, compared tothe control group. Additionally, the carboxylesterase inhibitor TPP exhibited a synergistic effect when combined with the aforementioned insecticides, with synergistic ratios increasing by 1.54, 1.28, 1.24, and 1.17, respectively, consistent with the RNAi results. Field trials further validated the indoor findings, showing that on the 5th day after application, the control efficacy of LCT+TPP, IPC+TPP, PHX+TPP, and IMI+TPP combinations improved by 35.6, 21.5, 46.0, and 70.1%, respectively, compared to the use of chemical pesticides alone.The functional inhibition of the VmCarEs-6 gene in T. trifolii through RNAi and TPP treatment significantly impaired the pest's detoxification metabolism, thereby enhancing its sensitivity to chemical pesticides. This study provides a critical theoretical foundation for elucidating the mechanisms of resistance in piercing-sucking pests and developing targeted pest control products.

Keywords:  Therioaphis trifolii       VmCarEs-6 gene       RNA interference       star polycation       enzyme inhibitor triphenyl phosphate (TPP)  
Online: 12 September 2025  
Fund: 

This research was supported by the earmarked fund for CARS (CARS-34-18). Studies were carried out in laboratories at the Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

About author:  Haoyang Hao, E-mail: yhh0836@hotmail.com;#Correspongdence Xiongbing Tu, E-mail: txb1208@163.com; Shali Yasen, E-mail: ysxjau@sina.com

Cite this article: 

Haoyang Hao, Kaihui Zhu, Xianfeng Yin, Shaodan Wang, Xu Liu, Dejun Li, Chunmei Yang, Zehua Zhang, Mark. Richard NcNeill, Shali Yasen, Xiongbing Tu. 2025. The VmCarEs-6 gene in the Therioaphis trifolii(Monell) enhances pesticide sensitivity by inhibiting detoxification metabolism. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.016

Auld V J, Fetter R D, Broadie K, Goodman C S. 1995. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in drosophila. Cell, 81, 757-767.

Avila L A , Aps L R , Sukthankar P, Ploscariu N, Gudlur S, Šimo L, Szoszkiewicz R, Park Y, Lee S Y, Iwamoto T, Ferreira L C, Tomich J M. 2015. Branched amphiphilic cationic oligopeptides form peptiplexes with DNA: A study of their biophysical properties and transfection efficiency. Molecular pharmaceutics 12, 706-715.

Bai L S, Xu J J, Zhao C X, Chang Y L, Dong Y L, Zhang K G, Li Y Q, Li Y P, Ma Z Q, Liu X L. 2021. Enhanced hydrolysis of β-cypermethrin caused by deletions in the glycin-rich region of carboxylesterase 001G from Helicoverpa armigera. Pest Management Science, 77, 2129-2141.

Bai W W, Gao H F, Zhang H, Yang A P, Li G K. 2018. Cloning of Carboxylesterase Gene cDNA Fragments in Sitobion avenaeFabriciusand its expression analysis under imidacloprid stress. Biotechnology Bulletin, 34, 109-114. (in Chinese)

Bao H B, Shao X S, Zhang Y X, Deng Y Y, Xu X Y, Liu Z W, Li Z. 2016.Specific synergist for Neonicotinoid Insecticides: IPPA08, a cis-Neonicotinoid compound with a unique oxabridged substructure. Journal of agricultural and food chemistry, 64, 5148-5155. 

Brady J P, Richmond R C, Oakeshott J G. 1990. Cloning of the esterase-5 locus from drosophila pseudoobscura and comparison with its homologue in D. melanogaster. Molecular Biology & Evolution, 7, 525-546.

Cedden D, Bucher G. 2025. The quest for the best target genes for RNAi-mediated pest control. Insect Molecular Biology, 34, 505-517. 

Chang J H, He Y P. 2014. Comparison of six statistical analysis software based on pesticide toxicity calculation. Journal of Anhui Agricultural Sciences 42, 746-748+802. (in Chinese)

Chevillon C H, Raymond M I, Guillemaud T H, Lenormand T H, Pasteur N I.1999. Population genetics of insecticide resistance in the mosquito Culex pipiens. Biological Journal of the Linnean Society 68, 147-157.

Christou P, Capell T, Kohli A, Gatehouse J A, Gatehouse A M R. 2006. Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 11, 302-308.

Coppin C W, Jackson C J, Sutherland T, Hart P J, Devonshire A L, Russell R J. 2012. Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides. Insect Biochemistry & Molecular Biology, 42, 343-352. 

Daborn, P J, Lumb C, Harrop T W R, Blasetti A, Pasricha S, Morin S, Mitchell S N, Donnelly M J, Müller P, Batterham P. 2012. Using drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. Insect Biochemistry and Molecular Biology, 42, 918-924.

El-Sayed M H, Ibrahim M M, Elsobki A E, Aioub A A. 2023. Enhancing the toxicity of cypermethrin and spinosad against Spodoptera Iittoralis (Lepidoptera: Noctuidae) by inhibition of detoxification enzymes. Toxics, 11, 215.

Gao H Y, Yang X B, Yan F, Sun Y N, Zhang Y, Gao S J. 2024. Analysis of transcriptome and resistance-related genes induced by beta-cypermethrin in the grasshopper Oedaleus asiaticus (Orthoptera: Oedipodidae). Journal of PlantProtection, 51, 421-431. (in Chinese)

Gong Y H, Ai G M, Li M, Shi X Y, Diao Q Y, Gao X W. 2017. Functional characterization of carboxylesterasegene mutations involved in Aphis gossypii resistanceto organophosphate Insecticides. Insect Molecular Biology, 26, 702-714.

Hasan W, Ramesha N M, Archana B R, Saivamsireddy G, Choudhuri S, Parmar S, Charitha K, Pandey S K. 2024. Advancing RNAi-based strategies for eco-friendly and targeted insect pest management in sustainable agriculture. Journal of Experimental Agriculture International, 46, 833-863.

He C G, Zhang X G. 2006. Field evaluation of lucerne (Medicago sativa L.) forresistance to aphids in northern China. Agricultural Research in the Arid Areas, 57, 471-475. (in Chinese)

Hu Z D, Feng X, Lin Q S, Feng X, Chen H Y, Li Z Y, Yin F, Liang P, GaoX W. 2016. cDNA cloning andcharacterization of the carboxylesterase pxCCE016b from the diamondbackmoth, Plutella xylostella L. Journal of Integrative Agriculture, 15, 1059-1068.

Jovicic I, Radonjic A, Petrovic-Obradovic O. 2022. Aphids (Hemiptera: Aphididae) on alfalfa in Serbia: Seasonal dynamics and pest status. Pesticidii Fitomedicina, 37, 77-83.

Karlsson G K, Stenberg J A, Lankinen Å. 2020. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evolutionary Applications13, 1791-1805.

Khan M, Han C, Choi N, Kim J. 2024. RNAseq-based carboxylesterase Nl-EST1 gene expression plasticity identification and its potential involvement in fenobucarb resistance in the brown planthopper Nilaparvata lugensInsects, 15, 743.

Li B J, Wang K K, Yu Y, Wei J Q, Zhu J, Wang J L, Lin F, Xu H H. 2023.PxRdl2 dsRNA increased the insecticidal activities of GABAR-targeting compounds against Plutella xylostella. Pesticide Biochemistry and Physiology195, 105548.

Li H C, Chu D D, Han X Y, Yuan G H, Miao X X, Guan R B. 2023. Sequence analysis and RNAi of carboxylesterase gene HaCarE in cotton bollworm Helicoverpa armigera. Journal of Plant Protection, 50, 602-609.

Li J H, Qian J, Xu Y Y, Yan S, Shen J, Yin M Z. 2019. A facile-synthesizedstar polycation constructed as a highly efficient gene vector in pest management. American Chemical Society Sustainable Chemistry & Engineering, 7,6316-6322.

Li T, Wang Y, Liu N. 2023. Synergism study for investigating possible mechanisms of insecticide resistance in mosquitoes. Cold Spring Harbor Protocols, 7, pdb-prot108042.

Li Y Q, Bai L S, Zhao C X, Xu J J, Sun Z J, Dong Y L. 2020. Functional characterization of two carboxylesterase genes involved in pyrethroid detoxification in Helicoverpa armigera. Journal of Agricultural and Food Chemistry, 68, 3390-3402.

Liu A Z, Jia Y L, Han S, Guan R N, Zhou H L. 2007. The control effect ofhighly toxic alternative pesticides on wheat aphids. Journal of Henan Agricultural Sciences, 11, 58-60. (in Chinese)

Liu D, De Schutter K, Chen P, Smagghe G. 2021. The N‐glycosylation‐relatedgenes as potential targets for RNAi‐mediated pest control of the colorado potato beetle (Leptinotarsa decemlineata). Pest Management Science78, 3815-3822.

Liu Q, Gao H H, Zhai T F, Chen H, Zheng L, Yu Y. 2018. Toxicities of six pesticides and their effects on detoxification enzymes in the adults of two Drosophila species in the laboratory. Journal of Plant Protection, 45, 1342-1348. (in Chinese)

Mabèche-Coisne M, Nikonov A A, Ishida Y, Jacquin-Joly E, Leal W S. 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci USA, 101, 11459-11464.

Mandloi S R. 2024. Optimizing sustainable agricultural practices: A case study of integrated pest management strategies in farming. International Journalof Scientific Research in Engineering and Management, 08, 1-5.

Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 2002-2007.

Pu J, Chung H. 2024. New and emerging mechanisms of insecticide resistance.Current Opinion in Insect Science, 63, 101184.

Qie X, Lu W, Aioub A A, Li Y, Wu W, Hu Z. 2020. Insight into the detoxification of haedoxan A and the synergistic effects of phrymarolin I against mythimna separata. Industrial Crops and Products, 158, 112967.

Qu M J, Xu X J, Han Z J, Chen M H. 2007. Esterase gene amplification and mutation associated with insecticide resistance. Chinese Bulletin of Entomology. 44, 29-31. 

Robusti A E, Godoy A H, Ventura M U, Hata F T, Soares J D, Menezes J A D O. 2025. Integrated pest management versus conventionalsystem in the common bean crop in Brazil: insecticide reduction and financial maximization. International Journal of Pest Management, 71, 395-405.

Shen X M, Liao C Y, Lu X P, Wang Z, Wang J J, Dou W. 2016. Involvement of three esterase genes from panonychus citri (McGregor) in fenpropathrin Resistance. International Journal of Molecular Sciences, 17, 1361.

Song L W, Shen Y F, Yue X L, Guo J M, Shen H M. 2014. Change of detoxificationenzyme activities in the pyridaben-resistant and susceptible strains of Tetranychus truncatus (Acarina:Tetranychidae). Acta Entomologica Sinica, 57, 323-329. (in Chinese)

Tiwari A K. 2024. IPM essentials: combining biology, ecology, and agriculture for sustainable pest control. Journal of Advances in Biology & amp; Biotechnology, 27, 39-47.

Wang K Y, Zhang Y, Wang H Y, Xia X M, Liu T X. 2010. Influence of three diets on susceptibility of selected insecticides and activities of detoxification esterases of Helicoverpa assulta (Lepidoptera:Noctuidae). Pesticide Biochemistry & Physiology, 96, 51-55.

Wang R, Zhang H M, Deng L, Xiao Q Q, Wang Q X, Liu G N. 2017. Carboxylesterase LsCarE1 mediates insecticide resistance in Laodelphax striatellus (Hemiptera:Delphacidae). Acta Entomologica Sinica, 60, 1006-1012. (in Chinese)

Wang Y L, Zhao R, Wang M, Zhao M M, Zhang X C, Li R. 2022. Cloning of four carboxylesterase genes in Pardosa astrigera (Araneae: Lycosidae) and their expression profiles under deltamethrin stress. Acta Entomologica Sinica, 65, 490-499. (in Chinese)

Wei D, Wang S, Niu J. 2023. RNAi-based pesticides: current knowledge and potential applications for integrated pest management. In Entomologia Generalis, 43, 1-4.

Wilson L J, Whitehouse M E A, Herron, G A. 2018. The management of insect pests in australian cotton: an evolving story. Annual Reviewof Entomology, 63, 215-237.

Xiao B, Xing S S, Deng D, Peng W, Zhai Z Z. 2021. Progress in research onthe use of RNAi delivery systems in pest control. Chinese Journal of Applied Entomology 58, 764-782. (in Chinese)

Yan S, Qian J, Cai C, Ma Z Z, Li J H, Yin M Z, Ren B Y, Shen J. 2019. Spraymethod application of transdermal dsRNA delivery system for efficientgene silencing and pest control on soybean aphid Aphis glycines. Journal of Pest Science, 93, 449-459.

Yang H L, Li H B, Dong W Y, Wang C C, Shi X Y, Liang P. 2024. Screening of synergistic mixture of lambda-cyhalothrin and nitenpyram and its field control efficacy on wheat aphid. Plant Protection, 50, 332-337. (in Chinese)

Yang X M, Yan Z K, Buschman L, Margolies D. 2001. Comparative susceptibility and possible detoxification mechanisms for selected miticides in Banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Experimental & amp; Applied Acarology, 25, 293-299.

Yorulmaz S, Ay R. 2009. Multiple resistance, detoxifying enzyme activity, and inheritance of abamectin resistance in Tetranychus urticae Koch (Acarina: Tetranychidae). Turkish Journal of Agriculture & Forestry, 33, 393-402.

Zhang J Q, Li D Q, Ge P T, Yang M L, Guo Y P, Zhu K Y, Ma E, Zhang JZ 2013. RNA interference revealed the roles of two carboxylesterase genesin insecticide detoxification in Locusta migratoria. Chemosphere, 93, 1207-1215.

Zhang Q L, Liu J H, Xu J, Ye H. 2021. The mechanism and application of RNA interference in Lepidopteran Insects. Biological Disaster Science 44, 363-378.(in Chinese)

Zhou W, Arcot Y, Medina R F, Bernal J, Cisneros-Zevallos L, Akbulut M E S.2024. Integrated pest management: an update on the sustainability approach to crop protection. American Chemical Society Omega, 9, 41130-41147.

Zhu K H, Zhang N, Zhang DG, Cai N, Liu R, Che W N, Hidayat U, Tu X B.2025. Aphid-resistant alfalfa cultivar minimizes the survival of spotted alfalfa aphid through upregulating plant defense compounds. Crop Protection, 187, 106662. 

[1] Luoyu Wu, Furong Chen, Pengwei Wang, Chongjing Xu, Weidong Wen, Matthias Hahn, Mingguo Zhou, Yiping Hou. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2285-2298.
[2] Mingmei Wu, Rui Dong, Yan Zhang, Haojie Liao, Tian Tian, Dandan Xu, Youjun Zhang, Zhaojiang Guo, Shaoli Wang.
Overexpression of TuABCC4 is associated with abamectin resistance in Tetranychus urticae Koch
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2299-2310.
[3] Kaixin Gu, Ran Wei, Yidan Sun, Xiaoxin Duan, Jing Gao, Jianxin Wang, Yiping Hou, Mingguo Zhou, Xiushi Song. Point mutations of Dicer2 conferred Fusarium asiaticum resistance to RNAi-related biopesticide[J]. >Journal of Integrative Agriculture, 2025, 24(2): 623-637.
[4] Qin Ma, Zizhen Fan, Ping Wang, Siya Ma, Jian Wen, Fengqin Cao, Xianwu Lin, Rihui Yan.

Silencing transformer and transformer-2 in Zeugodacus cucurbitae causes defective sex determination with inviability of most pseudomales [J]. >Journal of Integrative Agriculture, 2024, 23(3): 938-947.

[5] Lingling Li, Junhong Fu, Changgeng Dai, Yuhang Zhou, Yang Hu, Hongbo Li. Disruption of a microvitellogenin gene impairs eggshell formation in Mythimna separata[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3801-3811.
[6] Qi Zhang, Wenqin Zhan, Chao Li, Ling Chang, Yi Dong, Jiang Zhang.

Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants [J]. >Journal of Integrative Agriculture, 2024, 23(1): 187-194.

[7] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[8] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[9] YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong. Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2023, 22(2): 495-504.
[10] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

[11] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[12] LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian. Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1880-1888.
[13] MENG Miao, YU Qi, WANG Qin, LIU Chun, LIU Zhao-yang, REN Chun-jiu, CUI Wei-zheng, LIU Qing-xin. BmApontic is involved in neurodevelopment in the silkworm Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1439-1446.
[14] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[15] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
No Suggested Reading articles found!