Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
PxGalectin-4 with single carbohydrate recognition domain involved in the immunity of Plutella xylostella against entomopathogenic fungus Isaria cicadae

Yongli Zhou1, 2*, Ying Lu1, 2*, Yue Xing1, 2, Jian Liang1, 2, Xiangli Dang1, 2#

1 Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China

2 Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China

 Highlights 

l PxGalectin-4 directly bound microbes and pathogen-associated molecular patterns, and agglutinated microbial cells.

l PxGalectin-4 promoted nodulation and encapsulation of hemocytes, and activated PPO.

l PxGalectin-4 possessed a direct antimicrobial activity in vitro and in vivo.

l Knockdown of PxGalectin-4 enhanced the susceptibility of Plutella xylostella to fungi.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小菜蛾Plutella xylostella对十字花科作物构成全球性威胁,并已对常规杀虫剂产生了显著抗性。昆虫病原真菌(Entomopathogenic fungi,EPF)作为化学杀虫剂的环境友好型替代品受到了广泛关注。由于昆虫免疫系统是抵御真菌病原体的主要防线,研究这些机制有助于开发生物防治策略。然而,关于昆虫中半乳糖凝集素免疫功能的研究仍然有限。本研究中,我们在小菜蛾中鉴定出一种半乳糖凝集素-4同源物PxGalectin-4,并系统地探讨了其应对昆虫病原真菌蝉拟青霉Isaria cicadae染的免疫功能。PxGalectin-4的开放阅读框编码了338个氨基酸,包含一个CRD结构域。研究发现,PxGalectin-4基因龄幼虫阶段和脂肪体中的表达量达到峰值,并在I. cicadae侵染后显著增加。功能分析表明,重组PxGalectin-4rPxGalectin-4)能够直接与微生物细胞和细胞壁成分结合,并表现出Ca2+依赖的微生物凝集作用。此外,rPxGalectin-4通过促进结节和包囊形成,增强血细胞介导的免疫反应,并提高了血淋巴中的酚氧化酶活性。敲低PxGalectin-4表达显著增强了小菜蛾幼虫对I. cicadae感染的易感性。总的来说,PxGalectin-4P. xylostellaI. cicadae的防御中发挥着重要的免疫作用,可能成为新的害虫控制策略的一个有前途的标。



Abstract  

The diamondback moth, Plutella xylostella represents a worldwide threat to Brassicaceae crops and has developed substantial resistance to conventional insecticides. Entomopathogenic fungi (EPF) have emerged as environmentally sustainable alternatives to chemical insecticides. Since insect immunity constitutes the primary defense against fungal pathogens, understanding these mechanisms could advance biocontrol strategies. Nevertheless, research on the immune functions of galectins in insects remains limited. This study identifies a Galectin-4 homolog in P. xylostella (PxGalectin-4) and systematically examines its immunological functions against an EPF Isaria cicadae infection. The open reading frame of PxGalectin-4 encoded 338 amino acids with a carbohydrate recognition domain (CRD). PxGalectin-4 expression exhibited peak levels in late-instar larval stages and fat body, and increased significantly following I. cicadae challenge. Functional characterization demonstrated that recombinant PxGalectin-4 (rPxGalectin-4) directly bound cells and cell wall components of microbes, and displayed Ca2+-dependent microbial agglutination. Additionally, rPxGalectin-4 enhanced hemocyte-mediated immune responses by promoting nodulation and encapsulation, and increased phenoloxidase activity of hemolymph. Knockdown of PxGalectin-4 significantly increased the susceptibility of P. xylostella larvae to I. cicadae infection. In conclusion, PxGalectin-4 serves a vital immune function in P. xylostella defense against I.cicadae, and presents a potential target for novel pest control strategies.

Keywords:  galectin       immunity       biocontrol       Plutella xylostella       entomopathogenic fungi       Isaria cicadae  
Online: 05 July 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (32372522), the Natural Science Foundation of Anhui Province, China (2108085MC104), and the Natural Science Research Project for Universities in Anhui Province, China (2022AH050929).

About author:  Yongli Zhou, E-mail: 2370165743@qq.com; Ying Lu, E-mail: 1125799818@qq.com; #Correspondence Xiangli Dang, Mobile: +86-18326075763, E-mail: xldang@ahau.edu.cn *These authors contributed equally to this study.

Cite this article: 

Yongli Zhou, Ying Lu, Yue Xing, Jian Liang, Xiangli Dang. 2025. PxGalectin-4 with single carbohydrate recognition domain involved in the immunity of Plutella xylostella against entomopathogenic fungus Isaria cicadae. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.002

Arthur C M, Baruffi M D, Cummings R D, Stowell S R. 2015. Evolving mechanistic insights into galectin functions. Methods in Molecular Biology1207, 1–35.

Ayona D, Fournier P E, Henrissat B, Desnues B. 2020. Utilization of galectins by pathogens for infection. Frontiers in Immunology11, 1877.

Cha G H, Liu Y, Peng T, Huang M Z, Xie C Y, Xiao Y C, Wang W N. 2015. Molecular cloning, expression of a galectin gene in Pacific white shrimp Litopenaeus vannamei and the antibacterial activity of its recombinant protein. Molecular Immunology67, 325–340.

Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. 2021. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology164, 401–432.

Gillespie J P, Kanost M R, Trenczek T. 1997. Biological mediators of insect immunity. Annual Review of Entomology42, 611–643.

Hoffmann J A. 2003. The immune response of DrosophilaNature426, 33–38.

Hu X, Chen H, Xu J, Zhao G, Huang X, Liu J, Batool K, Wu C, Wu S, Huang E, Wu J, Chowhury M, Zhang J, Guan X, Yu X Q, Zhang L. 2020. Function of Aedes aegypti galectin-6 in modulation of Cry11Aa toxicity. Pesticide Biochemistry and Physiology, 162, 96–104.

Hughes R C. 2001. Galectins as modulators of cell adhesion. Biochimie83, 667–676.

Kamhawi S, Ramalho-Ortigao M, Pham V M, Kumar S, Lawyer P G, Turco S J, Barillas-Mury C, Sacks D L, Valenzuela J G. 2004. A role for insect galectins in parasite survival. Cell119, 329–341.

Lavine M D, Strand M R. 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology32, 1295–1309.

Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogasterAnnual Review of Immunology25, 697–743.

Li J, Lin J, Fernandez-Grandon G M, Zhang J, You M, Xia X. 2021. Functional identification of C-type lectin in the diamondback moth, Plutella xylostella (L.) innate immunity. Journal of Integrative Agriculture20, 3240–3255.

Li S S, Hao Z P, Xu H H, Gao Y, Zhang M Y, Liang J, Dang X L. 2022. Silencing β‐1, 3‐glucan binding protein enhances the susceptibility of Plutella xylostella to entomopathogenic fungus Isaria cicadaePest Management Science78, 3117–3127.

Li Z, Feng X, Liu S S, You M S, Furlong M J. 2016. Biology, ecology, and management of the diamondback moth in China. Annual Review of Entomology61, 277–296.

Lim C, Lee S, Kwon H, Sandamalika W M G, Lee J. 2023. Molecular characterization, immune responses, and functional aspects of atypical prototype galectin from redlip mullet (Liza haematocheila) as a pattern recognition receptor in host immune defense system. Fish and Shellfish Immunology133, 108551.

Lin Z, Wang J L, Cheng Y, Wang J X, Zou Z. 2020. Pattern recognition receptors from lepidopteran insects and their biological functions. Developmental and Comparative Immunology108, 103688.

Litwin A, Nowak M, Różalska S. 2020. Entomopathogenic fungi: Unconventional applications. Reviews in Environmental Science and Biotechnology19, 23–42.

Liu F F, Liu Z, Li H, Zhang W T, Wang Q, Zhang B X, Sun Y X, Rao X J. 2022. CTL10 has multiple functions in the innate immune responses of the silkworm, Bombyx moriDevelopmental and Comparative Immunology127, 104309.

Liu F T, Stowell S R. 2023. The role of galectins in immunity and infection. Nature Reviews Immunology23, 479–494.

Liu H, Xu J, Wang L, Guo P, Tang Z, Sun X, Tang X, Wang W, Wang L, Cao Y, Xia Q, Zhao P. 2023. Serpin-1a and serpin-6 regulate the Toll pathway immune homeostasis by synergistically inhibiting the Spätzle-processing enzyme CLIP2 in silkworm, Bombyx moriPlos Pathogens19, e1011740.

Lu Y, Su F, Li Q, Zhang J, Li Y, Tang T, Hu Q, Yu X Q. 2020. Pattern recognition receptors in Drosophila immune responses. Developmental and Comparative Immunology102, 103468.

Luo T, Ren X, Fan L, Guo C, Zhang B, Bi J, Guan S, Ning M. 2023. Identification of two galectin-4 proteins (PcGal4-L and PcGal4-L-CRD) and their function in AMP expression in Procambarus clarkiiFish and Shellfish Immunology141, 109040.

Pace K E, Lebestky T, Hummel T, Arnoux P, Kwan K, Baum L G. 2002. Characterization of a novel Drosophila melanogaster galectin, expression in developing immune, neural, and muscle tissues. Journal of Biological Chemistry277, 13091–13098.

Peng Y, Wang L F, Gao Y, Ye L, Xu H H, Li S J, Jiang J Q, Li G T, Dang X L. 2020. Identification and characterization of the glycoside hydrolase family 18 genes from the entomopathogenic fungus Isaria cicadae genome. Canadian Journal of Microbiology66, 274–287.

Praparatana R, Maskaew S, Thongsoi R, Runsaeng P, Utarabhand P. 2022. Galectin, another lectin from Fenneropenaeus merguiensis, contributed in shrimp immune defense. Journal of Invertebrate Pathology190, 107738.

Rao X J, Wu P, Shahzad T, Liu S, Chen S, Yang Y F, Shi Q, Yu X Q. 2016. Characterization of a dual-CRD galectin in the silkworm Bombyx moriDevelopmental and Comparative Immunology60, 149–159.

Shahzad T, Zhan M Y, Yang P J, Yu X Q, Rao X J. 2017. Molecular cloning and analysis of a C-type lectin from silkworm Bombyx moriArchives of Insect Biochemistry and Physiology95, e21391.

Sheehan G, Farrell G, Kavanagh K. 2020. Immune priming: The secret weapon of the insect world. Virulence11, 238–246.

Shi X Z, Kang C J, Wang S J, Zhong X, Beerntsen B T, Yu X Q. 2014. Functions of Armigeres subalbatus C-type lectins in innate immunity. Insect Biochemistry and Molecular Biology52, 102–114.

Song X, Zhang H, Wang L, Zhao J, Mu C, Song L, Qiu L, Liu X. 2011. A galectin with quadruple-domain from bay scallop Argopecten irradians is involved in innate immune response. Developmental and Comparative Immunology35, 592–602.

Song Z K, Tian M L, Dong Y P, Ren C B, Du Y, Hu J. 2020. The C-type lectin IML-10 promotes hemocytic encapsulation by enhancing aggregation of hemocytes in the Asian corn borer Ostrinia furnacalisInsect Biochemistry and Molecular Biology118, 103314.

Sumathipala N, Jiang H. 2010. Involvement of Manduca sexta peptidoglycan recognition protein-1 in the recognition of bacteria and activation of prophenoloxidase system. Insect Biochemistry and Molecular Biology40, 487–495.

Vasta G R. 2009. Roles of galectins in infection. Nature Reviews Microbiology7, 424–438.

Vasta G R. 2012. Galectins as pattern recognition receptors: Structure, function, and evolution. Advances in Experimental Medicine and Biology946, 21–36.

Wang C, St Leger R J. 2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proceedings of the National Academy of Sciences of the United States of America103, 6647–6652.

Wang X, Zhang Y, Zhang R, Zhang J. 2019. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Current Opinion in Insect Science33, 105–110.

Xia X, You M, Rao X J, Yu X Q. 2018. Insect C-type lectins in innate immunity. Developmental and Comparative Immunology83, 70–79.

Xia X, Yu L, Xue M, Yu X, Vasseur L, Gurr G M, Baxter S W, Lin H, Lin J, You M. 2015. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.). Scientific Reports5, 9877.

Yang Q, Sun J, Wu W, Xing Z, Yan X, Lv X, Wang L, Song L. 2023. A galectin-9 involved in the microbial recognition and haemocyte autophagy in the Pacific oyster Crassostrea gigasDevelopmental and Comparative Immunology149, 105063.

Yang R Y, Rabinovich G A, Liu F T. 2008. Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine10, e17.

Yu X Q, Zhu Y F, Ma C, Fabrick J A, Kanost M R. 2002. Pattern recognition proteins in Manduca sexta plasma. Insect Biochemistry and Molecular Biology32, 1287–1293.

Zhang W, Tettamanti G, Bassal T, Heryanto C, Eleftherianos I, Mohamed A. 2021. Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cellular Signalling83, 110003.

Zhong J, Li J, Wu D, Deng X, Lu Y, Yu X Q. 2025. Characterization and functional analysis of Spodoptera litura galectins. Pest Management Science, 81, 3148–3161.

[1] Min Tu, Zhongfeng Zhu , Xinyang Zhao, Haibin Cai, Yikun Zhang, Yichao Yan, Ke Yin, Zhimin Sha, Yi Zhou, Gongyou Chen, Lifang Zou. The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Hailong Kong, Dong Guo, Lei Zhang, Dianjie Xie, Kenneth Wilson, Xingfu Jiang. Enhanced immune responses of gregarious larvae contribute to successful adult migration in the migratory oriental armyworm[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[3] Ke Yao, Menghan Zhang, Jianjun Xu, Deliang Peng, Wenkun Huang, Ling’an Kong, Shiming Liu, Guangkuo Li, Huan Peng. Genome-wide identification and characterization of putative effectors in Heterodera schachtii that suppress plant immune response[J]. >Journal of Integrative Agriculture, 2025, 24(1): 196-208.
[4] Zenglei Hu, Ya Huang, Jiao Hu, Xiaoquan Wang, Shunlin Hu, Xiufan Liu.

Antibodies elicited by Newcastle disease virus-vectored H7N9 avian influenza vaccine are functional in activating the complement system [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2052-2064.

[5] Wei Zhang, Shaoyang Li, Rong Li, Jinzhi Niu, Jinjun Wang. Characterization of Domeless receptors and the role of BdDomeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis[J]. >Journal of Integrative Agriculture, 2024, 23(4): 1274-1284.
[6] Tuizi Feng, Yuan Chen, Zhourong Li, Ji Pei, Deliang Peng, Huan Peng, Haibo Long. A novel chorismate mutase effector secreted from root-knot nematode Meloidogyne enterolobii manipulates plant immunity to promote parasitism[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4107-4119.
[7] Zhenchao Fu, Huiqian Zhuang, Vincent Ninkuu, Jianpei Yan, Guangyue Li, Xiufen Yang, Hongmei Zeng. A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3774-3787.
[8] Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2024, 23(1): 205-216.
[9] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[10] DU Su-jie, YE Fu-yu, XU Shi-yun, WAN Wei-jie, GUO Jian-yang, YANG Nian-wan, LIU Wan-xue. Thelytokous Diglyphus wani: A more promising biological control agent against agromyzid leafminers than its arrhenotokous counterpart[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3731-3743.
[11] YAN Shan-chun, WU Hong-fei, ZHENG Lin, TAN Ming-tao, JIANG Dun. Cadmium (Cd) exposure through Hyphantria cunea pupae reduces the parasitic fitness of Chouioia cunea: A potential risk to its biocontrol efficiency[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3103-3114.
[12] YIN Jun-jie, XIONG Jun, XU Li-ting, CHEN Xue-wei, LI Wei-tao. Recent advances in plant immunity with cell death: A review[J]. >Journal of Integrative Agriculture, 2022, 21(3): 610-620.
[13] JIN Na, LIU Shi-ming, PENG Huan, HUANG Wen-kun, KONG Ling-an, PENG De-liang. Effect of Aspergillus niger NBC001 on the soybean rhizosphere microbial community in a soybean cyst nematode-infested field[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3230-3239.
[14] LI Jin-yang, LIN Jun-han, G. Mandela FERNáNDEZ-GRANDON, ZHANG Jia-yu, YOU Min-sheng, XIA Xiao-feng. Functional identification of C-type lectin in the diamondback moth, Plutella xylostella (L.) innate immunity[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3240-3255.
[15] HU Yang, WANG Ming-shu, CHENG An-chun, JIA Ren-yong, YANG Qiao, WU Ying, LIU Ma-feng, ZHAO Xin-xin, ZHU De-kang, CHEN Shun, ZHANG Sha-qiu, WANG Yin, GAO Qun, OU Xu-min, MAO Sai, WEN Xing-jian, XU Zhi-wen, CHEN Zheng-li, ZHU Ling, LUO Qi-hui, TIAN Bin, PAN Lei-chang, Mujeeb Ur REHMAN, LIU Yun-ya, YU Yan-ling, ZHANG Ling, CHEN Xiao-yue. Alphaherpesvirus-vectored vaccines against animal diseases: Current progress[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1928-1940.
No Suggested Reading articles found!