Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 205-216    DOI: 10.1016/j.jia.2023.05.022
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda

Yanfei Song1, Tai’an Tian2, Yichai Chen1, Keshi Zhang3, Maofa Yang1, 4, Jianfeng Liu1# #br#

1 Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University/Scientific Observing and Experiment Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China

2 Administration of Guizhou Fanjingshan National Nature Reserve, Jiangkou 554400, China

3 Centre for Biodiversity and Biosecurity, School of Biological Sciences, The University of Auckland, Auckland 1072, New Zealand

4 College of Tobacco Science, Guizhou University, Guiyang 550025, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

寄生性天敌是生态群落中的关键调节因子,已被广泛应用于害虫生物防治中。草地贪夜蛾,俗称秋粘虫,近年来入侵我国,对农业生产造成巨大的经济损失。中华甲虫蒲螨是近年来新发现的一种外寄生螨,在防控多种重大农业害虫中具有很大潜力。因此,本论文研究中华甲虫蒲螨对寄主草地贪夜蛾的寄生潜能,评价中华甲虫蒲螨亚致死密度对草地贪夜蛾亲代和子代适合度,及其对寄主细胞免疫和体液免疫的影响。结果表明,40头中华甲虫蒲螨能致死5龄草地贪夜蛾幼虫。因多数草地贪夜蛾幼虫能存活至成虫期并交配产出后代,5头和10头中华甲虫蒲螨寄生被认为能对寄主造成亚致死效应。中华甲虫蒲螨亚致死密度寄生能降低草地贪夜蛾蛹重、羽化率和产卵量,并延长其发育历期和寿命。10头和40头中华甲虫蒲螨寄生能破坏草地贪夜蛾的细胞免疫和体液免疫。本研究首次证实寄生螨寄生能对寄主免疫反应产生负面影响。此外,该研究还揭示了寄生螨的生防潜能及其与寄主的相互作用关系。



Abstract  

Parasitoids are key regulators in ecological communities and widely used as agents in biocontrol programmes.  The fall armyworm, Spodoptera frugiperda, recently invaded multiple continents and caused substantial economic losses in agriculture.  Pyemotes zhonghuajia, a newly identified mite parasitoid, has shown potential for controlling various agricultural insect pests.  Therefore, this study tested the performance of Pzhonghuajia in parasitising S. frugiperda.  We also investigated the sublethal effects of parasitism by Pzhonghuajia on host fitness traits, transgenerational impacts, and cellular and humoral immunity.  Our result showed that the fifth-instar larvae of Sfrugiperda parasitised by 40 Pzhonghuajia were all dead (i.e., a lethal effect), while parasitism by 5 or 10 Pzhonghuajia was considered sublethal since many Sfrugiperda survived to adulthood and produced offspring after mating.  The sublethal influences from parasitism by Pzhonghuajia resulted in reduced pupal weight, adult emergence rate and fecundity, but increased developmental time and longevity.  Parasitism at both lethal (40 mites) and sublethal (10 mites) levels impaired the cellular and humoral immunity of Sfrugiperda.  This study presents the first empirical evidence that mite parasitoids can negatively influence host immunity.  Moreover, it provides insights into the biocontrol potential of mite parasitoids and their interactions with hosts.

Keywords:  Pyemotes zhonghuajia        Spodoptera frugiperda        immunity        parasitic-induced influence        biocontrol        parasitoid   
Received: 16 February 2023   Accepted: 21 April 2023
Fund: 

This study was funded by the National Natural Science Foundation of China (32060637 and 32260708), the High-level Talent Innovation and Entrepreneurship Funding Project in Guizhou Province, China ((2021)01), the Guizhou Provincial Science and Technology Innovation Talent Team Project, China (Qian Ke He Pingtai Rencai-CXTD (2021)004), the Systematic and Applied Acarology Society International Joint Project, England (2022(01)), the Growth Project of Youth Talent in Ordinary Universities in Guizhou Province, China ((2021)079), and the Natural Science Special Project in Guizhou University, China ((2020)02).

About author:  Yanfei Song, E-mail: yanfeisong1998@126.com, #Correspondence Jianfeng Liu, Tel: +86-851-88305271, E-mail: jfliu3@gzu.edu.cn

Cite this article: 

Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. 2024. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture, 23(1): 205-216.

Abram P K, Brodeur J, Urbaneja A, Tena A. 2019. Nonreproductive effects of insect parasitoids on their hosts. Annual Review of Entomology, 64, 259–276.

Abro A. 1982. The effects of parasitic water mite larvae (Arrenurus spp.) on zygopteran imagoes (Odonata). Journal of Invertebrate Pathology, 39, 373–381.

Barreto-Barriga O, Larsen J, Real-Santillán R O, Bahena F, del-Val E. 2021. Differential biocontrol efficacy of the parasitoid wasp Campoletis sonorensis on the Fall Armyworm Spodoptera frugiperda feeding on landrace and hybrid maize. Biocontrol Science and Technology, 31, 713–724.

Brodeur J, Boivin G. 2004. Functional ecology of immature parasitoids. Annual Review of Entomology, 49, 27–49.

Cai J, Ye G, Hu C. 2001. Effect of parasitization by the pupal endoparisitoid, Pteromalus puparum (Hymenoptera: Pteromalidae) on humoral immune reactions of Pieris rapae (Lepidopetera: Pieridae). Insect Science, 8, 335–342.

Cai J, Ye G Y, Hu C. 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): Effects of parasitization and venom on host hemocytes. Journal of Insect Physiology, 50, 315–322.

Carton Y, Nappi A J. 1997. Drosophila cellular immunity against parasitoids. Parasitology Today, 13, 218–227.

Charles H M, Killian K A. 2015. Response of the insect immune system to three different immune challenges. Journal of Insect Physiology, 81, 97–108.

Chen Y, Chen D, Yang M, Liu J. 2022. The effect of temperatures and hosts on the life cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 13, 211.

Chen Y, Tian T, Chen Y, Yu L, Hu J, Yu X, Liu J, Yang M. 2021. The biocontrol agent Pyemotes zhonghuajia has the highest lethal weight ratio compared with its prey and the most dramatic body weight change during pregnancy. Insects, 12, 490.

Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.

Chi H. 2022. TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taiwan of China. [2022-9-1]. http://140.120.197.173/Ecology/

Chi H, Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, 24, 225–240.

Delfín-González H, Bojórquez-Acevedo M, Manrique-Saide P. 2007. Parasitoids of fall armyworm (Lepidoptera: Noctuidae) from a traditional maize crop in the Mexican State of Yucatan. The Florida Entomologist, 90, 759–761.

Eggleton P, Belshaw R. 1992. Insect parasitoids: An evolutionary overview. Philosophical Transactions of the Royal Society of London (Series B: Biological Science), 337, 1–20.

Er A, Uçkan F, Rivers D B, Ergin E, Sak O. 2010. Effects of parasitization and envenomation by the endoparasitic wasp Pimpla turionellae (Hymenoptera: Ichneumonidae) on hemocyte numbers, morphology, and viability of its host Galleria mellonella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 103, 273–282.

Fain A. 1994. Adaptation, specificity and host-parasite coevolution in mites (ACARI). International Journal for Parasitology, 24, 1273–1283.

Feener Jr D H, Brown B V. 1997. Diptera as parasitoids. Annual Review of Entomology, 42, 73–97.

Feng B, Tian T, Tian Y, Song Y, Tang X, Yang M, Liu J. 2022. Parasitic behavior of Pyemotes zhonghuajia (Trombidiformes: Pyemotidae) on fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Systematic and Applied Acarology, 27, 1745–1754.

Ferkovich S M, Greany P D, Dillard C. 1983. Changes in haemolymph proteins of the fall armyworm, Spodoptera frugiperda (J. E. Smith), associated with parasitism by the braconid parasitoid Cotesia marginiventris (Cresson). Journal of Insect Physiology, 29, 933–942.

Hay-Roe M M, Meagher R L, Nagoshi R N. 2013. Effect of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) strain and diet on oviposition and development of the parasitoid Euplectrus platyhypenae (Hymenoptera: Eulophidae). Biological Control, 66, 21–26.

He L, Li L, Yu L, He X Z, Jiao R, Xu C, Zhang L, Liu J. 2019. Optimizing cold storage of the ectoparasitic mite Pyemotes zhonghuajia (Acari: Pyemotidae), an efficient biological control agent of stem borers. Experimental and Applied Acarology, 78, 327–342.

Hillyer J F. 2016. Insect immunology and hematopoiesis. Developmental and Comparative Immunology, 58, 102–118.

Hruska A J. 2019. Fall armyworm (Spodoptera frugiperda) management by smallholders. Commonwealth Agricultural Bureaux International Reviews, 14, 1–11.

Kenis M, du Plessis H, Van den Berg J, Ba M N, Goergen G, Kwadjo K E, Baoua I, Tefera T, Buddie A, Cafà G, Offord L, Rwomushana I, Polaszek A. 2019. Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects, 10, 92.

Kim-Jo C, Gatti J, Poirié M. 2019. Drosophila cellular immunity against parasitoid wasps: A complex and time-dependent process. Frontiers in Physiology, 10, 603.

Kuris A M. 1974. Trophic interactions: Similarity of parasitic castrators to parasitoids. The Quarterly Review of Biology, 49, 129–148.

Li L, Xu Z, Liu N, Wu G, Ren X, Zhu J. 2018. Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity. Archives of Insect Biochemistry and Physiology, 98, e21451.

Li X, Yao H, Ye G. 2011. Effects of parasitization by Cotesia chilonis (Hymenoptera: Braconidae) on larval immune responses of Chilo suppressalis (Lepidoptera: Pyralidae). Acta Phytophylacica Sinica, 38, 313–319. (in Chinese)

Lindquist E. 1998. Evolution of phytophagy in trombidiform mites. Experimental & Applied Acarology, 22, 73–88.

Liu J, Tian T, Li X, Chen Y, Yu X, Tan X, Zhu Y, Yang M. 2020. Is Pyemotes zhonghuajia (Acari: Pyemotidae) a suitable biological control agent against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae)? Systematic and Applied Acarology, 25, 649–657.

Mohamed S A, Wamalwa M, Obala F, Tonnang H E Z, Tefera T, Calatayud P, Subramanian S, Ekesi S. 2021. A deadly encounter: Alien invasive Spodoptera frugiperda in Africa and indigenous natural enemy, Cotesia icipe (Hymenoptera, Braconidae). PLoS ONE, 16, e0253122.

Molina-Ochoa J, Carpenter J E, Heinrichs E A, Foster J E. 2003. Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean basin: an inventory. Florida Entomologist, 86, 254–289.

Niassy S, Agbodzavu M K, Kimathi E, Mutune B, Abdel-Rahman E F M, Salifu D, Hailu G, Belayneh Y T, Felege E, Tonnang H E Z, Ekesi S, Subramanian S. 2021. Bioecology of fall armyworm Spodoptera frugiperda (J. E. Smith), its management and potential patterns of seasonal spread in africa. PLoS ONE, 16, e0249042.

Ogunfunmilayo A O, Kazeem S A, Idoko J E, Adebayo R A, Fayemi E Y, Adedibu O B, Oloyede-Kamiyo Q O, Nwogwugwu J O, Akinbode O A, Salihu S, Offord L C, Buddie A G, Ofuya T I. 2021. Occurrence of natural enemies of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) in Nigeria. PLoS ONE, 16, e0254328.

Okabe K. 2013. Ecological characteristics of insects that affect symbiotic relationships with mites. Entomological Science, 16, 363–378.

Ordóñez-García M, Rios-Velasco C, Berlanga-Reyes D I, Acosta-Muñiz C H, Salas-Marina M, Cambero-Campos, O J. 2015. Occurrence of natural enemies of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Chihuahua, Mexico. The Florida Entomologist, 98, 843–847.

Ou H D, Atlihan R, Wang X Q, Li H X, Yu X F, Jin X, Yang M F. 2021. Host deprivation effects on population performance and paralysis rates of Habrobracon hebetor (Hymenoptera: Braconidae). Pest Management Science, 77, 1851–1863.

Parry D. 2009. Beyond Pandora’s box: Quantitatively evaluating non-target effects of parasitoids in classical biological control. Biological Invasions, 11, 47–58.

Pigeault R, Vézilier J, Nicot A, Gandon S, Rivero A. 2015. Transgenerational effect of infection in Plasmodium-infected mosquitoes. Biology Letter, 11, 20141025.

Poulin R, Thomas F. 2008. Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generations. Oikos, 117, 331–335.

Rasekh A, Shahbazi-Gahrouhi M R, Michaud J P. 2022. The transgenerational consequences of maternal parasitism for aphid life history and suitability for subsequent parasitism. Bulletin of Entomological Research, 112, 51–57.

de Rijk M, Dicke M, Poelman E H. 2013. Foraging behaviour by parasitoids in multiherbivore communities. Animal Behaviour, 85, 1517–1528.

Salazar-Mendoza P, Rodriguez-Saona C, Fernandes A O. 2020. Release density, dispersal capacity, and optimal rearing conditions for Telenomus remus, an egg parasitoid of Spodoptera frugiperda, in maize. Biocontrol Science and Technology, 30, 1040–1059.

Shi J, Jin H, Wang F, Stanley D W, Wang H, Fang Q, Ye G. 2022. The larval saliva of an endoparasitic wasp, Pteromalus puparum, suppresses host immunity. Journal of Insect Physiology, 141, 104425.

Song Y, Yu L, Yang M, Ye S, Yan B, Li L, Wu C, Liu J. 2022. A long-read genome assembly of a native mite in China Pyemotes zhonghuajia Yu, Zhang & He (Prostigmata: Pyemotidae) reveals gene expansion in toxin-related gene families. Toxins, 14, 571.

Teng Z, Xu G, Gan S, Chen X, Fang Q, Ye G. 2016. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae. Journal of Insect Physiology, 85, 46–56.

Tian T, Yu L, Sun G, Yu X, Li L, Wu C, Chen Y, Yang M, Liu J. 2020a. Biological control efficiency of an ectoparasitic mite Pyemotes zhonghuajia on oriental armyworm Mythimna separata. Systematic and Applied Acarology, 25, 1683–1692.

Tian T, Yu L, Yu X, Li L, Sun G, Zhang H, Liu J, Yang M. 2020b. Proper hunger increased the lethal efficiency of the ectoparasitic mite Pyemotes zhonghuajia (Trombidiformes: Pyemotidae). Systematic and Applied Acarology, 25, 1661–1667.

Tojo S, Naganuma F, Arakawa K, Yokoo S. 2000. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 46, 1129–1135.

Tomalski M D, Bruce W A, Travis J, Blum M S. 1988. Preliminary characterization of toxins from the straw itch mite, Pyemotes tritici, which induce paralysis in the larvae of a moth. Toxicon, 26, 127–132.

Tomalski M D, Kutney R, Bruce W A, Brown M R, Blum M S, Travis J. 1989. Purification and characterization of insect toxins derived from the mite, Pyemotes tritici. Toxicon, 27, 1151–1167.

Vinson S B. 1990. How parasitoids deal with the immune system of their host: An overview. Archives of Insect Biochemistry and Physiology, 13, 3–27.

Vinson S B, Iwantsch G F. 1980. Host regulation by insect parasitoids. The Quarterly Review of Biology, 55, 143–165.

Wan J, Huang C, Li C, Zhou H, Ren Y, Li Z, Xing L, Zhang B, Qiao X, Liu B, Liu C, Yu X, Liu W, Wang W, Qian W, Mckirdy S, Wan F. 2021. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Integrative Agriculture, 20, 646–663.

Winsou J K, Tepa-Yotto G T, Thunes K H, Thunes K H, Meadow R, Tamò M, Sæthre M G. 2022. Seasonal variations of Spodoptera frugiperda host plant diversity and parasitoid complex in southern and central Benin. Insects, 13, 491.

Yang L, Wan B, Wang B, Liu M, Fang Q, Song Q, Ye G. 2019. The pupal ectoparasitoid Pachycrepoideus vindemmiae regulates cellular and humoral immunity of host Drosophila melanogaster. Frontiers in Physiology, 10,1282.

Ye S, Zhang H, Song Y, Yang M, Li L, Yu L, Liu J. 2022. Complete mitochondrial genome of Pyemotes zhonghuajia (Acari: Pyemotidae). Systematic and Applied Acarology, 27, 1677–1686.

Yu L, Zhang Z. 2019. New zealand Pyemotes (Trombidiformes: Pyemotidae). Systematic and Applied Acarology, 24, 1014–1047.

Yu L, Zhang Z, He L. 2010. Two new species of pyemotes closely related to P. tritici (Acari: Pyemotidae). Zootaxa, 2723,1–40.

Zhang X, Zhang K. 2019. Cellular response to bacterial infection in the grasshopper Oxya chinensis. Biology Open, 8, bio045864.

Zhao Y, Huang J, Ni H, Guo D, Yang F, Wang X, Wu S, Gao C. 2020. Susceptibility of fall armyworm, Spodoptera frugiperda (J. E. Smith), to eight insecticides in China, with special reference to lambda-cyhalothrin. Pesticide Biochemistry and Physiology, 168,104623.

Zhou Y, Wen J, Ling J. 2010. Changes on the total protein content in hemolymph of Semanotus bifasciatus after infected by Pyemotes zhonghuajia. Chinese Journal of Applied Entomology, 47, 895–899. (in Chinese)  

[1] HUANG Xiao-long, JIANG Ting, WU Zhen-ping, ZHANG Wan-na, XIAO Hai-jun . Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis[J]. >Journal of Integrative Agriculture, 2020, 19(3): 785-792.
[2] ZHENG Ya-qiang, ZHANG Li-min, CHEN Bin, YAN Nai-sheng, GUI Fu-rong, ZAN Qing-an, DU Guang-zu, HE Shu-qi, LI Zheng-yue, GAO Yu-lin, XIAO Guan-li.
Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 394-405.
[3] WANG Zhi-zhi, LIU Yin-quan, SHI Min, HUANG Jian-hua, CHEN Xue-xin. Parasitoid wasps as effective biological control agents[J]. >Journal of Integrative Agriculture, 2019, 18(4): 705-715.
No Suggested Reading articles found!