Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genetic dissection of maize kernel protein content through a multi-locus genome-wide association study

Jihong Zhang1*, Na Liu1, 2*, Shiwei Wang1, Xiang Guo1, Xinyu Sun1, Haiyang Duan1, Lianglei Zhang1, Liang Yuan1, Huiling Xie1, Huili Yang1, Xiaoyang Chen1, Dong Ding1, Jihua Tang1, 3#, Xuehai Zhang1#

1 State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China

2 College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China

3 The Shennong Laboratory, Zhengzhou 450002, China

 Highlights 

1. A genome-wide association study (GWAS) integrating six models identified 473 QTNs and 115 co-localized loci associated with kernel protein content (PC) in maize, with the 3VmrMLM model detecting the most QTNs.

2. The candidate gene Zm00001d037565, encoding GA2-oxidase, exhibited strong selection signals during maize domestication and breeding.

3. A favorable haplotype (HapA) of Zm00001d037565 significantly increased kernel PC, making it a promising target for high-protein maize breeding.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米籽粒蛋白质含量(Protein Content, PC)是决定其营养品质的重要指标,但其遗传基础尚未被充分解析。本研究以264份玉米自交系为材料,利用125万个单核苷酸多态性标记,综合应用BLINKFarmCPUMLMMLMMSUPER3VmrMLM等六种分析模型开展了其籽粒PC全基因组关联分析。结果表明,籽粒PC在不同材料间表现出较大变异,范围为9.26%20.94%,广义遗传力为0.56。共检测到473个显著数量性状核苷酸(Quantitative trait nucleotides, QTN),每个QTN对表型变异的解释率在0.08%7.10%之间。其中,有115QTNs在不同模型、环境和分析方法下重复被检测到。值得注意的是,3VmrMLM模型检测到的显著QTNs数量最多(59个),其中38表现出基因型×环境互作效应MLM模型检测到的显著QTNs数量最少8个。进一步分析共鉴定出35个候选基因位于显著QTN邻近区域或其。其中Zm00001d033805Zm00001d037565Zm00001d052164Zm00001d031535等四个基因与籽粒PC密切相关,涉及氮代谢、光合作用和三羧酸循环等关键生物过程。特别地,编码赤霉素2-氧化酶的Zm00001d037565籽粒发育中发挥作用,可能参与调控籽粒蛋白质的积累。单倍型分析显示,该基因的HapA型与较高的PC显著相关。选择扫分析表明,该基因在玉米从祖先类群(Zea mays ssp. mexicanaZea mays ssp. parviglumis)驯化为栽培种、从热带/亚热带区域向温带区域适应以及现代育种过程中均受到了选择。综上,本研究加深了对玉米籽粒蛋白质含量遗传机制的理解,提供了可用于分子育种的关键基因资源和靶标,为高蛋白玉米的选育提供了新思路和理论支撑。



Abstract  

Protein content (PC) in maize kernels is a key determinant of their nutritional quality, however, its genetic basis remains largely unexplored.  In this study, we conducted a genome-wide association study (GWAS) using 264 maize inbred lines and 1.25 million single nucleotide polymorphisms (SNPs), applying six GWAS models: BLINK, FarmCPU, MLM, MLMM, SUPER, and 3VmrMLM. Kernel PC exhibited substantial variation, ranging from 9.26 to 20.94%, with a broad-sense heritability of 0.56.  A total of 473 significant quantitative trait nucleotides (QTNs) were detected, each explaining 0.08 to 7.10% of the phenotypic variance.  Among them, 115 QTNs were consistently detected across different models, environments and analytical methods.  Notably, 3VmrMLM model identified 59 most significant QTNs, with 38 were QEIs, and the MLM model identified the fewest significant QTNs (8).  We further identified 35 candidate genes located within or adjacent to the significant QTNs.  Among these, four genes - Zm00001d033805, Zm00001d037565, Zm00001d052164 and Zm00001d031535 - were strongly associated with PC.  These genes are implicated in critical biological pathways, including nitrogen metabolism, photosynthesis, and the tricarboxylic acid (TCA) cycle.  Notably, Zm00001d037565, encoding a gibberellin 2-oxidase, plays a role in seed development and is likely involved in regulating protein accumulation in kernels.  Haplotype analysis revealed that the HapA of Zm00001d037565 is significantly associated with higher PC.  Selective sweep analysis indicated that this gene underwent selection during maize domestication from teosinte (Zea mays ssp. mexicana and Zea mays ssp. parviglumis), its adaptation from tropical/subtropical to temperate regions, and throughout modern breeding programs.  Overall, this study advances our understanding of the genetic architecture of maize kernel PC and provides valuable candidate genes and haplotypes for marker-assisted selection, offering new targets for developing high-protein maize varieties.

Keywords:  maize       protein content              GWAS              multi-Models              3VmrMLM  
Online: 09 June 2025  
Fund: 

This research was supported by the National Key Research and Development Program of China (2021YFF1000300), the Special Project of Key Research and Development Program of Henan Province, China (251111111000), the Henan Province Science and Technology Attack Project, China (242102110307 and 232102110181), and the Henan Provincial Higher Education Key Research Project, China (24B210003).

About author:  #Correspondence Xuehai Zhang, Tel: +86-371-56990188, Fax: +86-371-56990186, E-mail: xuehai85@126.com; Jihua Tang, E-mail: tangjihua1@163.com * These authors contributed equally to this manuscript.

Cite this article: 

Jihong Zhang, Na Liu, Shiwei Wang, Xiang Guo, Xinyu Sun, Haiyang Duan, Lianglei Zhang, Liang Yuan, Huiling Xie, Huili Yang, Xiaoyang Chen, Dong Ding, Jihua Tang, Xuehai Zhang. 2025. Genetic dissection of maize kernel protein content through a multi-locus genome-wide association study. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.016

Alqudah A, Sallam A, Stephen B, Börner A. 2020. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. Journal of Advanced Research, 22, 119-135.

Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu Y, Hao D, Yuan L. 2023. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. Plant Biotechnology Journal, 22, 312-329.

Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Julio S, Rubén J, Ruairidh J, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, et al. 2022. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nature Genetics54, 1736-1745.

Day L. 2013. Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science and Technology, 32, 25-42.

Dong S, He W, Ji J, Zhang C, Guo Y, Yang T. 2021. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Briefings in Bioinformatics, 22, 157-159.

Duan H, Li J, Xue Z, Yang L, Sun Y, Ju X, Ju X, Zhang J, Xu G, Xiong X, Sun L, Xu S, Xie H, Ding D, Zhang X, Zhang X, Tang J. 2025. Genetic dissection of internode length confers improvement for ideal plant architecture in maize. Plant Journal, 121, e17245.

Dudley J, Lambert R. 1992. Ninety generations of selection for oil and protein in maize. Maydica, 37, 81–87.

Flint-Garcia S, Bodnar A, Scott M. 2009. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theoretical and Applied Genetics, 119, 1129-1142.

Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, et al. 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4, 2832.

Godfray H, Beddington J, Crute I, Haddad L, Lawrence D, Muir J, Pretty J, Robinson S, Thomas S, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science, 327, 812-818.

Gui J, Liu C, Shen J, Li L. 2014. Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance. Plant Physiology, 166, 1463-1478.

Hayes M, Giang K, Berhane B, Mulligan R. 2013. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. The Journal of Biological Chemistry, 288, 36519-36529.

Hong Y, Zhang H, Huang L, Li D, Song F. 2016. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Frontiers in Plant Science, 7, 4. 

Hu X, Yasir M, Zhuo Y, Cai Y, Ren X, Rong J. 2024. Genomic insights into glume pubescence in durum wheat: GWAS and haplotype analysis implicates TdELD1-1A as a candidate gene. Gene, 909, 148309.

Huang M, Liu X, Zhou Y, Summers R, Zhang Z. 2019. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience, 8, 2.

Huang R, Liu M, Gong G, Wu P, Bai M, Qin H, Wang G, Liao H, Wang X, Li Y, Wu H, Wang X, Yang C, Schubert D, Zhang S. 2022. BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis. Plant Cell, 34, 2242-2265.

Huang Y, Wang H, Zhu Y, Huang X, Li S, Wu X, Zhao Y, Bao Z, Qin L, Jin Y, Cui Y, Ma G, Xiao Q, Wang Q, Wang J, Yang X, Liu H, Lu X, Larkins B, Wang W, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature, 612, 292-300.

Kim J, Yi G, Kim M, Son B, Bae H, Go Y, Kim S, Baek S, Kim S, Chung I. 2020. Glycolysis stimulation and storage protein accumulation are hallmarks of maize (Zea mays L.) grain filling. Applied Biological Chemistry, 63, 54.

Knapp S, Ross W, Stroup W. 1983. Exact confidence intervals for heritability on a progeny mean Basis1. Crop Science, 25, 192-194. 

Li H, Li Y, Cao R, Sun X, Wu Y, Tang J, Liu Z. 2009. Inheritance effect of protein content in maize kernels and its relation to yield. Acta Agronomica Sinica, 35, 755-760. (in Chinese)

Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton M, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 45, 43–50.

Li J, Zhang L, Guo X, Zhang J, Wang S, Sun X, Duan H, Xie H, Ding D, Tang J, Zhang X. 2025. Identification of novel QTL contributing to resistance against Aspergillus flavus in maize (Zea mays L.) using an enlarged genotype panel. Journal of Integrative Agriculture, DOI: 10.1016/j.jia.2025.01.002.

Li M, Zhang Y, Xiang Y, Liu M, Zhang Y. 2022. IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Molecular Plant, 15, 1251-1253.

Li X, Gu W, Sun S, Chen Z, Chen J, Song W, Zhao H, Lai J. 2018. Defective kernel 39 encodes a PPR protein required for seed development in maize. Journal of Integrative Plant Biology, 60, 45-64.

Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J. 2017. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Molecular Plant, 10, 414-426.

Liu N, Xue Y, Guo Z, Li W, Tang J. 2016. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Frontiers in Plant Science, 7, 1046. 

Liu R, Cao S, Sayyed A, Yang H, Zhao J, Wang X, Jia R, Sun F, Tan B. 2020. The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. Journal of Experimental Botany, 71, 5495-5505.

Liu X, Huang M, Fan B, Buckler E, Zhang Z. 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics, 12, e1005767.

Lu X, Zhou Z, Wang Y, Wang R, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Weng J, Zhou Y, Li X. 2022. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines. Frontiers in Plant Science, 13, 1045854. 

Lv D, Li J, Zhang X, Zheng R, Zhang A, Luo J, Tong B, Luo H, Yan J, Deng M. 2024. Genetic analysis of maize crude fat content by multi-locus genome-wide association study. Journal of Integrative AgricultureDOI: 10.1016/j.jia.2024.11.014

Maqbool M, Beshir I, Khokhar E. 2021. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breeding, 140, 375-399.

Miao C, Xu Y, Liu S, Schnable P, Schnable J. 2020. Increased power and accuracy of causal locus identification in time series genome-wide association in sorghum. Plant Physiology, 183, 1898-1909.

Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. 2023. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. Plant Cell, 35, 409-434.

Ojagh S, Abbasi F, Mirhadi M. 2015. Effect of fertigation on amount of protein, yield and yield components of corn. International Journal of Biosciences, 6, 16-22.

Ren W, Zhao L, Liang J, Wang L, Chen L, Li P, Liu Z, Li X, Zhang Z, Li J, He K, Zhao Z, Ali F, Mi G, Yan J, Zhang F, Chen F, Yuan L, Pan Q. 2022. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nature Plants, 8, 1408-1422.

Segura V, Vilhjálmsson B, Platt A, Korte A, Seren Ü, Long Q, Nordborg M. 2012. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics, 44, 825-830.

Somegowda V, Prasad K, Naravula J, Vemula A, Selvanayagam S, Rathore A, Jones C, Gupta R, Deshpande S. 2022. Genetic dissection and quantitative trait loci mapping of agronomic and fodder quality traits in sorghum under different water regimes. Frontiers in Plant Science, 13, 810632. 

Su J, Wang C, Yang D, Shi C, Zhang A, Ma Q, Liu J, Zhang X, Huang L, Ma X. 2020. Decryption of favourable haplotypes and potential candidate genes for five fibre quality properties using a relatively novel genome-wide association study procedure in upland cotton. Industrial Crops and Products, 158, 113004.

Voorend W, Nelissen H, Vanholme R, Vliegher A, Breusegem F, Boerjan W. Overexpression of GA20‐OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnology Journal, 14, 997-1007.

Wan W, Wu Y, Hu D, Ye F, Wu X, Qi X, Liang H, Zhou H, Xue J, Xu S, Zhang X. 2023. Genome-wide association analysis of kernel nutritional quality in two natural maize populations. Molecular Breeding, 43, 18. 

Wang G, Qi W, Wu Q, Yao D, Zhang J, Zhu J, Wang G, Wang G, Tang Y, Song R. 2014. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiology, 165, 582-594.

Wang G, Wang F, Wang G, Wang F, Zhang X, Zhong M, Zhang J, Lin D, Tang Y, Xu Z, Song R. 2012. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell, 24, 3447-3462.

Wang Q, Tian F, Pan Y, Buckler E, Zhang Z. 2014. A SUPER powerful method for genome wide association study. PLoS ONE, 9, e107684.

Wang Z. 2003. The situation analysis and integrated evaluation of quality breeding in normal corn. Agricultural and Food Sciences, 71, 301.

Wu Y, Messing J. 2014. Proteome balancing of the maize seed for higher nutritional value. Frontiers in Plant Science, 5, 240. 

Xie W, Zhu A, Ali T, Zhang Z, Chen X, Wu F, Huang J, Davis K. 2023. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature, 616, 300-305.

Xiong X, Li J, Su P, Duan H, Sun L, Xu S, Sun Y, Zhao H, Chen X, Ding D, Zhang X, Tang J. 2023. Genetic dissection of maize (Zea mays L.) chlorophyll content using multi-locus genome-wide association studies. BMC Genomics, 24, 384.

Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, Betts A, Herrmann J, Edwards E, Okamoto M, Hedrich R, Gilliham M. 2021. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications, 12, 1952.

Xuan Y, Kumar V, Han X, Kim S, Jeong J, Kim C, Gao Y, Han C. 2019. CBL-INTERACTING PROTEIN KINASE 9 regulates ammonium-dependent root growth downstream of IDD10 in rice (Oryza sativa). Annals of Botany, 124, 947-960.

Yang L, Yang D, Yuan H. 2016. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation. Agricultural and Food Sciences, 6, 561-563.

Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, Wang Y, Xu P, Peng Y, Shi Z, Lan L, Ma Z, Yang X, Zhang Q, Bai M, Li S, et al. 2019. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 51, 1052–1059.

Yang Y, Ding S, Wang H, Sun F, Huang W, Song S, Xu C, Tan B. 2017. The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytologist, 214, 782-795.

Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M. 2016. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48, 927-934.

Yoshida H, Okada S, Wang F, Shiota S, Mori M, Kawamura M, Zhao X, Wang Y, Nishigaki N, Kobayashi A, Miura K, Yoshida S, Ikegami M, Ito A, Huang L T, Caroline H, Yamagata Y, Morinaka Y, Yamasaki M, Kotake T, et al. 2023. Integrated genome-wide differentiation and association analyses identify causal genes underlying breeding-selected grain quality traits in japonica rice. Molecular Plant, 16, 1460-1477.

Yu J, Xuan W, Tian Y, Fan L, Sun J, Tang W, Chen G, Wang B, Liu Y, Wu W, Liu X, Jiang X, Zhou C, Dai Z, Xu D, Wang C, Wan J. 2021. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 19, 167-176.

Zhao H, Qin Y, Xiao Z, Sun Q, Gong D, Qiu F. 2023. Revealing the process of storage protein rebalancing in high quality protein maize by proteomic and transcriptomic. Journal of Integrative Agriculture, 22, 1308-1323.

Zheng H, Tang W, Yang T, Zhou M, Guo C, Cheng T, Cao W, Zhu Y, Zhang Y, Yao X. 2024. Grain protein content phenotyping in rice via hyperspectral imaging technology and a genome-wide association study. Plant Phenomics, 6, 200.

Zheng Y, Yuan F, Huang Y, Zhao Y, Jia X, Zhu L, Guo J. 2021. Genome-wide association studies of grain quality traits in maize. Scientific Reports, 11, 9797.

[1] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, MIAO Hua-rong, Ye Chu, YANG Wei-qiang, ZHONG Wen, CHEN Jing. Identification of QTLs for plant height and branching related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[2] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role of GmMDH2 in salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[3] YAN He, CHEN Shuang, ZHAO Jing-kun, ZHANG Zhi-bing, CHEN Lun-lun, HUANG Ren-mei, LIU Yong-min, SHI Xiao-jun, ZHANG Yu-ting. Dynamic changes in weed abundance and biodiversity following different green manure establishment[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[4] YUAN Li-fang, JIANG Hang, LIU Qi-bao, JIANG Xi-long, WEI Yan-feng, YIN Xiang-tian, LI Ting-gang. Acidic environment favors the development and pathogenicity of the grape white rot fungus Coniella vitis[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[5] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice-wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[6] Honglu Wang, Hui Zhang, Qian Ma, Enguo Wu, Aliaksandr Ivanistau, Baili Feng. Effect of nitrogen fertilizer on proso millet starch structure, pasting, and rheological properties[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[7] Changning Wei, Hui Cao, Chenxu Li, Hongyu Song, Qing Liu, Xingquan Zhu, Wenbin Zheng. Differences in N6-methyladenosine (m6A) methylation among the three major clonal lineages of Toxoplasma gondii tachyzoites[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[8] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Investigating the impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[9] Chunjia Jin, Ziqi Liang, Xiaodong Su, Peiyue Wang, Xiaodong Chen, Yue Wang, Xinjian Lei, Junhu Yao, Shengru Wu. Low rumen degradable starch reduces diarrhea and colonic inflammation by influencing the whole gastrointestinal microbiota and metabolite flow in dairy goats[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[10] ZENG Jian-qi, ZHAO De-hui, YANG Li, YANG Yu-feng, LIU Dan, TIAN Yu-bing, WANG Feng-ju, CAO Shuang-he, XIA Xian-chun, HE Zhong-hu, ZHANG Yong. Fine mapping and candidate gene analysis of a major QTL for grain length on chromosome 5BS in bread wheat[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[11] Shanshan Qi, Haoyang Wu, Donghua Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong, Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun. Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[12] Shudong Chen, Yupan Zou, Xin Tong, Cao Xu. A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[13] Ting Pan, Ruiting Guo, Weiwei Wang, Xing Liu, Bing Xia, Linshu Jiang, Ming Liu. Mechanism of mitigating on Deoxynivalenol-induced intestinal toxicity in swine and its dietary regulation strategy[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[14] Jiazhi Sun, Bingyun Yang, Lingmin Xia, Rui Yang, Chaoyang Ding, Yang Sun, Xing Chen, Chunyan Gu, Xue Yang, Yu Chen. Amino acid substitutions in succinate dehydrogenase complex conferring resistance to the SDHI fungicide pydiflumetofen in Cochlibolus heterostrophus causing southern corn leaf blight[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[15] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
No Suggested Reading articles found!