Alassane-Kpembi I, Pinton P, Hupe J F, Neves M, Lippi Y, Combes S, Castex M, Oswald I P. 2018. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome. Toxins (Basel), 10, 199.
Alcock J, Maley C C, Aktipis C A. 2014. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays, 36, 940-949.
Bai Y, Ma K, Li J, Ren Z, Zhang J, Shan A. 2022. Lactobacillus rhamnosus GG ameliorates DON-induced intestinal damage depending on the enrichment of beneficial bacteria in weaned piglets. Journal of Animal Science and Biotechnology, 13, 90.
Basso K, Gomes F, Bracarense A P. 2013. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. Toxins (Basel), 5, 2341-2352.
Becker L L, Derouchey J M, Woodworth J C, Tokach M D, Goodband R D, Vidal A, Gougoulias C, Gebhardt J T. 2022. Evaluation of dietary mycotoxin control strategies on nursery pig growth performance and blood measures. Journal of Animal Science, 100, 50.
Bracarense A, Pierron A, Pinton P, Gerez J R, Schatzmayr G, Moll W D, Zhou T, Oswald I P. 2020. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food and Chemical Toxicology, 140, 111241.
Bracarense A P, Lucioli J, Grenier B, Drociunas Pacheco G, Moll W D, Schatzmayr G, Oswald I P. 2012. Chronic ingestion of Deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. British Journal of Nutrition, 107, 1776-1786.
Cani P D. 2016. Interactions between gut microbes and host cells control gut barrier and metabolism. International Journal of Obesity Supplements, 6, S28-S31.
Chillappagari S, Garapati V, Mahavadi P, Naehrlich L, Schmeck B T, Schmitz M L, Guenther A. 2021. Defective BACH1/HO-1 regulatory circuits in cystic fibrosis bronchial epithelial cells. Journal of Cystic Fibrosis, 20, 140-148.
Cortez V, Boyd D F, Crawford J C, Sharp B, Livingston B, Rowe H M, Davis A, Alsallaq R, Robinson C G, Vogel P, Rosch J W, Margolis E, Thomas P G, Schultz-Cherry S. 2020. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nature communications, 11, 2097.
Dalton B, Campbell I C, Chung R, Breen G, Schmidt U, Himmerich H. 2018. Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients, 10, 1573.
Darwish W S, Chen Z, Li Y, Tan H, Chiba H, Hui S P. 2020. Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Research, 36, 287-299.
Dersjant-Li Y, Verstegen M W, Gerrits W J. 2003. The impact of low concentrations of Aflatoxin, Deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutrition Research Reviews, 16, 223-239.
Drayton M, Deisinger J P, Ludwig K C, Raheem N, Muller A, Schneider T, Straus S K. 2021. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. International Journal of Molecular Sciences, 22, 11172.
Efeyan A, Comb W C, Sabatini D M. 2015. Nutrient-sensing mechanisms and pathways. Nature, 517, 302-310.
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. 2023. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Critical Reviews in Food Science Nutrition, 1-17.
Fischer N, Sechet E, Friedman R, Amiot A, Sobhani I, Nigro G, Sansonetti P J, Sperandio B. 2016. Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge. Proceeding of National Academy of the United States of America, 113, E2993-3001.
Flannery B M, Clark E S, Pestka J J. 2012. Anorexia induction by the trichothecene Deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicological Science, 130, 289-297.
Garcia G R, Dogi C A, Poloni V L, Fochesato A S, De Moreno De Leblanc A, Cossalter A M, Payros D, Oswald I P, Cavaglieri L R. 2019. Beneficial effects of Saccharomyces cerevisiae RC016 in weaned piglets: in vivo and ex vivo analysis. Beneficial Microbes, 10, 33-42.
García G R, Payros D, Pinton P, Dogi C A, Laffitte J, Neves M, González Pereyra M L, Cavaglieri L R, Oswald I P. 2018. Intestinal toxicity of Deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology, 92, 983-993.
Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. 2021. Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins (Basel), 13, 46.
Guerre P. 2020. Mycotoxin and Gut Microbiota Interactions. Toxins (Basel), 12, 769.
Hand K V, Bruen C M, O'halloran F, Panwar H, Calderwood D, Giblin L, Green B D. 2013. Examining acute and chronic effects of short- and long-chain fatty acids on peptide YY (PYY) gene expression, cellular storage and secretion in STC-1 cells. European Journal of Nutrition, 52, 1303-1313.
He C, Fan Y, Liu G, Zhang H. 2008. Isolation and identification of a strain of Aspergillus tubingensis with Deoxynivalenol biotransformation capability. International Journal of Molecular Sciences, 9, 2366-2375.
He J W, Bondy G S, Zhou T, Caldwell D, Boland G J, Scott P M. 2015. Toxicology of 3-epi-deoxynivalenol, a Deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food and Chemical Toxicology, 84, 250-259.
He K, Pan X, Zhou H R, Pestka J J. 2013. Modulation of inflammatory gene expression by the ribotoxin Deoxynivalenol involves coordinate regulation of the transcriptome and translatome. Toxicological Sciences, 131, 153-163.
He W J, Shi M M, Yang P, Huang T, Zhao Y, Wu A B, Dong W B, Li H P, Zhang J B, Liao Y C. 2020. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify Deoxynivalenol in wheat via epimerization in a Devosia strain. Food Chemistry, 321, 126703.
Holanda D M, Kim S W. 2020. Efficacy of Mycotoxin Detoxifiers on Health and Growth of Newly-Weaned Pigs under Chronic Dietary Challenge of Deoxynivalenol. Toxins (Basel), 12,
Hou Q, Ye L, Liu H, Huang L, Yang Q, Turner J R, Yu Q. 2018. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death and Differentiation, 25, 1657-1670.
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. 2023. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Critical Reviews in Food Science and Nutrition, 63, 790-812.
Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, Ito M, Karlovsky P, Tsushima S. 2011. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades Deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Applied Microbiology and Biotechnology, 89, 419-427.
Islam M R, Roh Y S, Kim J, Lim C W, Kim B. 2013. Differential immune modulation by Deoxynivalenol (vomitoxin) in mice. Toxicology Letters, 221, 152-163.
Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. 2023. Dietary taurine supplementation counteracts Deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicology and Environmental Safety, 253, 114705.
Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. 2023. Mycotoxin Deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. Journal of Hazardous Materials, 451, 131172.
Jia R, Liu W, Zhao L, Cao L, Shen Z. 2020. Low doses of individual and combined Deoxynivalenol and Zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicology Letters, 333, 159-169.
Jia R, Sadiq F A, Liu W, Cao L, Shen Z. 2021. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed Deoxynivalenol contaminated diets. Food and Chemical Toxicology, 148, 111962.
Johansson M E, Phillipson M, Petersson J, Velcich A, Holm L, Hansson G C. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceeding of National Academy of the United States of America, 105, 15064-15069.
Jpestka J. 2008. Deoxynivalenol:Toxicity,mechanisms and animal health risks. Animals Breeding and Feed, 137, 283-298.
Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution, 251, 689-698.
Kullik K, Brosig B, Kersten S, Valenta H, Diesing A K, Panther P, Reinhardt N, Kluess J, Rothkötter H J, Breves G, Dänicke S. 2013. Interactions between the Fusarium toxin Deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food and Chemical Toxicology, 57, 11-20.
Lessard M, Savard C, Deschene K, Lauzon K, Pinilla V A, Gagnon C A, Lapointe J, Guay F, Chorfi Y. 2015. Impact of Deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology, 80, 7-16.
Li E, Horn N, Ajuwon K M. 2021a. Mechanisms of Deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Archives of Toxicology, 95, 2065-2079.
Li F, Xu D, Hou K, Gou X, Lv N, Fang W, Li Y. 2021b. Pretreatment of Indobufen and Aspirin and their Combinations with Clopidogrel or Ticagrelor Alleviates Inflammasome Mediated Pyroptosis Via Inhibiting NF-kappaB/NLRP3 Pathway in Ischemic Stroke. Journal of Neuroimmune Pharmacology, 16, 835-853.
Li R, Li Y, Su Y, Shen D, Dai P, Li C. 2018. Short-term ingestion of Deoxynivalenol in naturally contaminated feed alters piglet performance and gut hormone secretion. Animal Science Journal, 89, 1134-1143.
Li X G, Zhu M, Chen M X, Fan H B, Fu H L, Zhou J Y, Zhai Z Y, Gao C Q, Yan H C, Wang X Q. 2019. Acute exposure to Deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/beta-catenin pathway. Toxicology Letters, 305, 19-31.
Li X Z, Zhu C, De Lange C F, Zhou T, He J, Yu H, Gong J, Young J C. 2011. Efficacy of detoxification of Deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Additves and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 28, 894-901.
Liang S J, Li X G, Wang X Q. 2019. Notch Signaling in Mammalian Intestinal Stem Cells: Determining Cell Fate and Maintaining Homeostasis. Current Stem Cell Research & Therapy, 14, 583-590.
Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. 2020. Baicalin alleviates Deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food and Chemical Toxicology, 140, 111326.
Liao Y, Peng Z, Chen L, Nussler A K, Liu L, Yang W. 2018. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food and Chemical Toxicology, 112, 342-354.
Lin R, Sun Y, Mu P, Zheng T, Mu H, Deng F, Deng Y, Wen J. 2020. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against Deoxynivalenol exposure in nude mice. Biochemical Pharmacology, 175, 113868.
Liu D, Wang Q, He W, Ge L, Huang K. 2022. Deoxynivalenol aggravates the immunosuppression in piglets and PAMs under the condition of PEDV infection through inhibiting TLR4/NLRP3 signaling pathway. Ecotoxicology and Environmental Safety, 231, 113209.
Long H, Xin Z, Zhang F, Zhai Z, Ni X, Chen J, Yang K, Liao P, Zhang L, Xiao Z, Sindaye D, Deng B. 2021. The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on Deoxynivalenol treated IPEC-J2 cells. Food Chemistry, 338, 128116.
Luna R A, Foster J A. 2015. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Current Opin Biotechnol, 32, 35-41.
Ma T Y, Nighot P, Al-Sadi R.2018. Tight Junctions and the Intestinal Barrier. Physiology of the Gastrointestinal Tract, 25, 587-639.
Maidana L G, Gerez J, Hohmann M N S, Verri W A, Jr., Bracarense A. 2021. Lactobacillus plantarum metabolites reduce Deoxynivalenol toxicity on jejunal explants of piglets. Toxicon, 203, 12-21.
Marin S, Ramos A J, Cano-Sancho G, Sanchis V. 2013. Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 60, 218-237.
Marreiro D D, Cruz K J, Morais J B, Beserra J B, Severo J S, De Oliveira A R. 2017. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel), 6, 24.
Martinez-Guryn K, Leone V, Chang E B. 2019. Regional Diversity of the Gastrointestinal Microbiome. Cell Host & Microbe, 26, 314-324.
Martinez G, Dieguez S N, Fernandez Paggi M B, Riccio M B, Perez Gaudio D S, Rodriguez E, Amanto F A, Tapia M O, Soraci A L. 2019. Effect of fosfomycin, Cynara scolymus extract, Deoxynivalenol and their combinations on intestinal health of weaned piglets. Animal Nutrition, 5, 386-395.
Meng X, Yu W, Duan N, Wang Z, Shen Y, Wu S. 2022. Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins (Basel), 14, 275.
Mishra S, Dwivedi P D, Pandey H P, Das M. 2014. Role of oxidative stress in Deoxynivalenol induced toxicity. Food and Chemical Toxicology, 72, 20-29.
Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. 2020. Global occurrence of Deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Critical Reviews in Food Science and Nutrition, 60, 1346-1374.
Morrison D J, Preston T. 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7, 189-200.
Namikawa T, Fukudome I, Kitagawa H, Okabayashi T, Kobayashi M, Hanazaki K. 2012. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology, 82, 147-152.
Park S H, Kim J, Kim D, Moon Y. 2017. Mycotoxin detoxifiers attenuate Deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicology In Vitro, 38, 108-116.
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald I P. 2016. Toxicology of Deoxynivalenol and its acetylated and modified forms. Archives of Toxicology, 90, 2931-2957.
Payros D, Menard S, Laffitte J, Neves M, Tremblay-Franco M, Luo S, Fouche E, Snini S P, Theodorou V, Pinton P, Oswald I P. 2020. The food contaminant, Deoxynivalenol, modulates the Thelper/Treg balance and increases inflammatory bowel diseases. Archives of Toxicology, 94, 3173-3184.
Peng Z, Chen L, Xiao J, Zhou X, Nüssler A K, Liu L, Liu J, Yang W. 2017. Review of mechanisms of Deoxynivalenol-induced anorexia: The role of gut microbiota. Journal of Applied Toxicology, 37, 1021-1029.
Pestka J J. 2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663-679.
Peterson L W, Artis D. 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14, 141-153.
Pierron A, Bracarense A, Cossalter A M, Laffitte J, Schwartz-Zimmermann H E, Schatzmayr G, Pinton P, Moll W D, Oswald I P. 2018. Deepoxy-deoxynivalenol retains some immune-modulatory properties of the parent molecule Deoxynivalenol in piglets. Archives of Toxicology, 92, 3381-3389.
Pinton P, Braicu C, Nougayrede J P, Laffitte J, Taranu I, Oswald I P. 2010. Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. Journal of Nutrition, 140, 1956-1962.
Pinton P, Graziani F, Pujol A, Nicoletti C, Paris O, Ernouf P, Di Pasquale E, Perrier J, Oswald I P, Maresca M. 2015. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule beta. Molecular Nutrition & Food Research, 59, 1076-1087.
Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense A P, Kolf-Clauw M, Oswald I P. 2012. Toxicity of Deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicological Sciences, 130, 180-190.
Plata-Salamán C R. 2001. Cytokines and feeding. International Journal of Obesity Related Metabolic Disordders, 13, 298-304.
Pomothy J M, Barna R F, Pászti E A, Babiczky Á, Szóládi Á, Jerzsele Á, Gere E P, Steel H C. 2020a. Beneficial Effects of Rosmarinic Acid on IPEC-J2 Cells Exposed to the Combination of Deoxynivalenol and T-2 Toxin. Mediators of Inflammation, 2020, 1-10.
Pomothy J M, Paszti-Gere E, Barna R F, Prokoly D, Jerzsele A. 2020b. The Impact of Fermented Wheat Germ Extract on Porcine Epithelial Cell Line Exposed to Deoxynivalenol and T-2 Mycotoxins. Oxidative Medicine and Cellular Longevity, 2020, 3854247.
Qin T, Liu X, Luo Y, Yu R, Chen S, Zhang J, Xu Y, Meng Z, Huang Y, Ren Z. 2020. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress. International Journal Biological Macromolecules, 152, 1265-1273.
Qiu Y, Nie X, Yang J, Wang L, Zhu C, Yang X, Jiang Z. 2022. Effect of Resveratrol Supplementation on Intestinal Oxidative Stress, Immunity and Gut Microbiota in Weaned Piglets Challenged with Deoxynivalenol. Antioxidants (Basel), 11, 1775.
Qiu Y, Yang J, Wang L, Yang X, Gao K, Zhu C, Jiang Z. 2021. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with Deoxynivalenol. Journal of Animal Science and Biotechnology, 12, 71.
Qu J, Zhang S, He W, Liu S, Mao X, Yin L, Yue D, Zhang P, Huang K, Chen X. 2022. Crucial Function of Caveolin-1 in Deoxynivalenol-Induced Enterotoxicity by Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis. Journal of Agricultural and Food Chemistry, 70, 12968-12981.
Recharla N, Park S, Kim M, Kim B, Jeong J Y. 2022. Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to Deoxynivalenol: a review. Journal of Animal Science Technology, 64, 640-653.
Reddy K E, Kim M, Kim K H, Ji S Y, Baek Y, Chun J L, Jung H J, Choe C, Lee H J, Kim M, Lee S D. 2021. Effect of commercially purified Deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents. Animal Bioscience, 34, 243-255.
Robert H, Payros D, Pinton P, Theodorou V, Mercier-Bonin M, Oswald I P. 2017. Impact of mycotoxins on the intestine: are mucus and microbiota new targets? Journal of Toxicology Environmental Health Part B Critical Reviews, 20, 249-275.
Savi G D, Zanoni E T, Furtado B G, De Souza H M, Scussel R, Machado-De-Ávila R A, Angioletto E. 2022. Mesoporous silica nanoparticles incorporated with zinc oxide as a novel antifungal agent against toxigenic fungi strains. Journal of Environmental Science and Health Part B, Pesticides, food contaminants, and agricultural wastes, 57, 176-183.
Schelstraete W, Devreese M, Croubels S. 2020. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food and Chemical Toxicology, 137, 111140.
Shen K, Jia Y, Wang X, Zhang J, Liu K, Wang J, Cai W, Li J, Li S, Zhao M, Wang Y, Hu D. 2021. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology Medicine, 165, 54-66.
Song Y, Xie F, Ma S, Deng G, Li Y, Nie Y, Wang F, Yu G, Gao Z, Chen K, Han L, Gao L. 2020. Caveolin-1 protects against DSS-induced colitis through inhibiting intestinal nitrosative stress and mucosal barrier damage in mice. Biochemical Pharmacology, 180, 114153.
Springler A, Vrubel G J, Mayer E, Schatzmayr G, Novak B. 2016. Effect of Fusarium-Derived Metabolites on the Barrier Integrity of Differentiated Intestinal Porcine Epithelial Cells (IPEC-J2). Toxins (Basel), 8, 345.
Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. 2022. Toxicokinetics and metabolism of Deoxynivalenol in animals and humans. Archives of Toxicology, 96, 2639-2654.
Tack J, Verbeure W, Mori H, Schol J, Van Den Houte K, Huang I H, Balsiger L, Broeders B, Colomier E, Scarpellini E, Carbone F. 2021. The gastrointestinal tract in hunger and satiety signalling. United European Gastroenterology Journal, 9, 727-734.
Tang M, Yuan D, Liao P. 2021. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in Deoxynivalenol-challenged piglets. Environmental Pollution, 289, 117865.
Tremblay-Franco M, Canlet C, Pinton P, Lippi Y, Gautier R, Naylies C, Neves M, Oswald I P, Debrauwer L, Alassane-Kpembi I. 2021. Statistical Integration of 'Omics Data Increases Biological Knowledge Extracted from Metabolomics Data: Application to Intestinal Exposure to the Mycotoxin Deoxynivalenol. Metabolites, 11, 407.
Tso K H, Lumsangkul C, Ju J C, Fan Y K, Chiang H I. 2021. The Potential of Peroxidases Extracted from the Spent Mushroom (Flammulina velutipes) Substrate Significantly Degrade Mycotoxin Deoxynivalenol. Toxins (Basel), 13, 72.
Van Der Sluis M, De Koning B A, De Bruijn A C, Velcich A, Meijerink J P, Van Goudoever J B, Büller H A, Dekker J, Van Seuningen I, Renes I B, Einerhand A W. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology, 131, 117-129.
Vignal C, Djouina M, Pichavant M, Caboche S, Waxin C, Beury D, Hot D, Gower-Rousseau C, Body-Malapel M. 2018. Chronic ingestion of Deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice. Archives of Toxicology, 92, 2327-2338.
Wang J J, Zhang R Q, Zhai Q Y, Liu J C, Li N, Liu W X, Li L, Shen W. 2019a. Metagenomic analysis of gut microbiota alteration in a mouse model exposed to mycotoxin Deoxynivalenol. Toxicology and Applied Pharmacology, 372, 47-56.
Wang N, Wu W, Pan J, Long M. 2019b. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms, 7, 208.
Wang S, Wu K, Xue D, Zhang C, Rajput S A, Qi D. 2021a. Mechanism of Deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food and Chemical Toxicology, 153, 112214.
Wang S, Yang J, Zhang B, Wu K, Yang A, Li C, Zhang J, Zhang C, Rajput S, Zhang N, Sun L, Qi D. 2018a. Deoxynivalenol Impairs Porcine Intestinal Host Defense Peptide Expression in Weaned Piglets and IPEC-J2 Cells. Toxins, 10, 541.
Wang S, Yang J, Zhang B, Zhang L, Wu K, Yang A, Li C, Wang Y, Zhang J, Qi D. 2019c. Potential Link between Gut Microbiota and Deoxynivalenol-Induced Feed Refusal in Weaned Piglets. Journal of Agricultural and Food Chemistry, 67, 4976-4986.
Wang S, Zhang C, Yang J, Wang X, Wu K, Zhang B, Zhang J, Yang A, Rajput S A, Qi D. 2020. Sodium Butyrate Protects the Intestinal Barrier by Modulating Intestinal Host Defense Peptide Expression and Gut Microbiota after a Challenge with Deoxynivalenol in Weaned Piglets. Journal of Agricultural and Food Chemistry, 68, 4515-4527.
Wang X, Zhang Y, Zhao J, Cao L, Zhu L, Huang Y, Chen X, Rahman S U, Feng S, Li Y, Wu J. 2019d. Deoxynivalenol Induces Inflammatory Injury in IPEC-J2 Cells via NF-κB Signaling Pathway. Toxins (Basel), 11, 733.
Wang X, Zuo Z, Deng J, Zhang Z, Chen C, Fan Y, Peng G, Cao S, Hu Y, Yu S, Chen C, Ren Z. 2018b. Protective Role of Selenium in Immune-Relevant Cytokine and Immunoglobulin Production by Piglet Splenic Lymphocytes Exposed to Deoxynivalenol. Biological Trace Element Research, 184, 83-91.
Wang Y, Heng C, Zhou X, Cao G, Jiang L, Wang J, Li K, Wang D, Zhan X. 2021b. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. British Journal of Nutrition, 125, 494-507.
Wang Z, Wu Q, Kuča K, Dohnal V, Tian Z. 2014. Deoxynivalenol: signaling pathways and human exposure risk assessment--an update. Archives of Toxicology, 88, 1915-1928.
Wei J T, Wu K T, Sun H, Khalil M M, Dai J F, Liu Y, Liu Q, Zhang N Y, Qi D S, Sun L H. 2019. A Novel Modified Hydrated Sodium Calcium Aluminosilicate (HSCAS) Adsorbent Can Effectively Reduce T-2 Toxin-Induced Toxicity in Growth Performance, Nutrient Digestibility, Serum Biochemistry, and Small Intestinal Morphology in Chicks. Toxins (Basel), 11, 199.
Wik J A, Skalhegg B S. 2022. T Cell Metabolism in Infection. Frontiers in Immunology, 13, 840610.
Wu L, Liao P, He L, Feng Z, Ren W, Yin J, Duan J, Li T, Yin Y. 2015. Dietary L-arginine supplementation protects weanling pigs from Deoxynivalenol-induced toxicity. Toxins (Basel), 7, 1341-1354.
Wu L, Wang W, Yao K, Zhou T, Yin J, Li T, Yang L, He L, Yang X, Zhang H, Wang Q, Huang R, Yin Y. 2013. Effects of dietary arginine and glutamine on alleviating the impairment induced by Deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One, 8, e69502.
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. 2017a. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Archives of Toxicology, 91, 3737-3785.
Wu W, Zhou H R, Pestka J J. 2017b. Potential roles for calcium-sensing receptor (CaSR) and transient receptor potential ankyrin-1 (TRPA1) in murine anorectic response to Deoxynivalenol (vomitoxin). Archives of Toxicology, 91, 495-507.
Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y, Sun X. 2022. Microbial detoxification of mycotoxins in food and feed. Critical Reviews in Food Science and Nutrition, 62, 4951-4969.
Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, Zhang X, Shi X, Li R, Wu J, Liu X, Hu W, Sun W. 2021. TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 12, 643-659.
Xu X, Yan G, Chang J, Wang P, Yin Q, Liu C, Zhu Q, Lu F. 2020. Comparative Transcriptome Analysis Reveals the Protective Mechanism of Glycyrrhinic Acid for Deoxynivalenol-Induced Inflammation and Apoptosis in IPEC-J2 Cells. Oxidative Medicine and Cellular Longevity, 2020, 5974157.
Yadavalli R, Valluru P, Raj R, Reddy C N, Mishra B. 2023. Biological detoxification of mycotoxins: Emphasizing the role of algae. Algal Research-Biomass Biofuels and Bioproducts, 71, 103039.
Yan H, Ajuwon K M. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One, 12, e0179586.
Yao Y, Long M. 2020. The biological detoxification of Deoxynivalenol: A review. Food and Chemical Toxicology, 145, 111649.
Yiannikouris A, François J, Poughon L, Dussap C G, Jeminet G, Bertin G, Jouany J P. 2004. Influence of pH on complexing of model beta-d-glucans with zearalenone. Journal of Food Protection, 67, 2741-2746.
Yu Y H, Lai Y H, Hsiao F S, Cheng Y H. 2021. Effects of Deoxynivalenol and Mycotoxin Adsorbent Agents on Mitogen-Activated Protein Kinase Signaling Pathways and Inflammation-Associated Gene Expression in Porcine Intestinal Epithelial Cells. Toxins (Basel), 13, 301.
Zha A, Cui Z, Qi M, Liao S, Yin J, Tan B, Liao P. 2020. Baicalin-Copper Complex Modulates Gut Microbiota, Inflammatory Responses, and Hormone Secretion in DON-Challenged Piglets. Animals (Basel), 10, 1535.
Zha A, Tu R, Cui Z, Qi M, Liao S, Wang J, Tan B, Liao P. 2021. Baicalin-Zinc Complex Alleviates Inflammatory Responses and Hormone Profiles by Microbiome in Deoxynivalenol Induced Piglets. Frontiers in Nutrition, 8, 738281.
Zhai Y, Zhong L, Gao H, Lu Z, Bie X, Zhao H, Zhang C, Lu F. 2019. Detoxification of Deoxynivalenol by a Mixed Culture of Soil Bacteria With 3-epi-Deoxynivalenol as the Main Intermediate. Frontiers in Microbiology, 10, 2172.
Zhang H, Deng X, Zhou C, Wu W, Zhang H. 2020a. Deoxynivalenol Induces Inflammation in IPEC-J2 Cells by Activating P38 MAPK And ERK1/2. Toxins (Basel), 12, 180.
Zhang H, Zhang H, Qin X, Wang X, Wang Y, Bin Y, Xie X, Zheng F, Luo H. 2021. Biodegradation of Deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-Deoxynivalenol and 3-epi-Deoxynivalenol as Intermediate Products. Frontiers in Microbiology, 12, 658421.
Zhang L, Ma R, Zhu M X, Zhang N Y, Liu X L, Wang Y W, Qin T, Zheng L Y, Liu Q, Zhang W P, Karrow N A, Sun L H. 2020b. Effect of Deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food and Chemical Toxicology, 138, 111187.
Zheng W, Ji X, Zhang Q, Yao W. 2018. Intestinal Microbiota Ecological Response to Oral Administrations of Hydrogen-Rich Water and Lactulose in Female Piglets Fed a Fusarium Toxin-Contaminated Diet. Toxins (Basel), 10, 246.
Zhou J-Y, Lin H-L, Wang Z, Zhang S-W, Huang D-G, Gao C-Q, Yan H-C, Wang X-Q. 2020a. Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against Deoxynivalenol through activation of the Wnt/β-catenin signaling pathway. Environmental Pollution, 262, 114290.
Zhou J-Y, Wang Z, Zhang S-W, Lin H-L, Gao C-Q, Zhao J-C, Yang C, Wang X-Q. 2019. Methionine and Its Hydroxyl Analogues Improve Stem Cell Activity To Eliminate Deoxynivalenol-Induced Intestinal Injury by Reactivating Wnt/β-Catenin Signaling. Journal of Agricultural and Food Chemistry, 67, 11464-11473.
Zhou J Y, Huang D G, Zhu M, Gao C Q, Yan H C, Li X G, Wang X Q. 2020b. Wnt/β-catenin-mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. Journal of Cellular Physiology, 235, 5613-5627.
Zou T D, Deng C X, Wang Z R, Ye Y L, You J M. 2019. Dietary alanyl-glutamine improves growth performance of weaned piglets through maintaining intestinal morphology and digestion-absorption function. Animal, 13, 1826-1833.
|