Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Dynamic changes in weed abundance and biodiversity following different green manure establishment
YAN He1, 2*, CHEN Shuang1, 2*, ZHAO Jing-kun3, ZHANG Zhi-bing1, 2, CHEN Lun-lun1, HUANG Ren-mei1, LIU Yong-min1, SHI Xiao-jun1, 2, 4, ZHANG Yu-ting1, 2#

1College of Resources and Environment, Southwest University, Chongqing 400716, China

2Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China

3Chongqing Agricultural Technology Extension Station, Chongqing 401121, China

4Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  杂草通过与农作物竞争养分和光照等资源、增加农作物病虫害传播风险,从而对农业生产造成负面影响。绿肥种植可以有效的防控田间杂草的生长繁殖,然而其防控效果目前尚不清晰。本文采用田间试验和荟萃分析相结合的方式,对绿肥种植田间杂草密度、生物量、多样性指数和土壤杂草种子库的动态变化进行了研究,并对杂草群落组成的变化进行了评价。田间试验表明,绿肥对杂草的抑制能力表现出先增强后减弱的趋势,如在11月至5绿肥的旺盛生长期,杂草的密度和多样性逐渐下降;5至7绿肥逐渐枯萎时期,杂草密度和多样性逐渐增加;7月至9月,随着绿肥残体的腐解杂草最终自然生草处理无显著差异。同时发现,禾本科绿肥多年生黑麦草(Lolium perenne L.)对杂草的抑制效果最好,在1-7月均将杂草密度和生物量维持在较低水平,且有效降低了土壤杂草种子库数量;其次是多年生黑麦草和毛叶苕子混播处理、毛叶苕子(Vicia villosa Roth)单播处理和二月兰(Orychophragmus violaceus L.)单播处理。荟萃分析结果表明,连续三年种植绿肥后,杂草密度较种植一到两年有显著降低;并进一步证实了禾本科绿肥对杂草的抑制能力最强,混播绿肥并不能增强杂草抑制效果。对杂草群落组成的研究结果显示,绿肥对多年生杂草的抑制效果较弱,使得杂草群落中多年生杂草比例增加,如空心莲子草(Alternanthera sessilis (L.) DC)、酢浆草(Oxalis corniculata L.)和香附子(Cyperus rotundus L.等,这可能会增加恶性杂草的入侵风险。综上,本研究明确了绿肥绿肥种植时间和种类对杂草密度和多样性的影响,定量了绿肥生长周期内的杂草动态变化情况,旨在为可持续杂草管理措施的建立和推广提供理论支撑。

Abstract  Weeds have a negative impact on agricultural production by competing with cultivated crops for resources and fostering conditions conducive to disease and insect pest dissemination. Hence, optimal weed management is of paramount importance for sustainable agricultural. In this study, the ability of four distinct green manure species to suppress weeds was determined in a field experiment conducted in Chongqing, Southwest China. After cultivating the green manure species, the weed density and diversity were monitored over the following year. The findings highlight a notable trend in the suppressive ability of green manures, with increased suppression observed from November to March, an optimal level observed from March to May, and a gradual decline observed thereafter. Poaceae (Lolium perenne L.) demonstrated the highest efficacy in suppressing weeds. The meta-analysis underscore the exceptional suppressive effects of poaceous green manures on weed as well and prove sustained planting for three or more consecutive years yielded superior weed suppression outcomes. Green manure had the most prominent inhibitory effect on poaceae weeds, followed by Polygonaceae and Caryophyllaceae. The field experiment also investigated the effect of green manures on weed community composition, they increased in the proportion of perennial weeds within these communities. This study offers valuable insights that can guide policymakers, agricultural experts, and farmers in devising effective weed management strategies. By highlighting the potential benefits of green manures and unraveling their nuanced impact, this study contributes to the arsenal of sustainable agricultural practices.
Keywords:  sustainable agriculture       cover cropping              green manure              weed              weed control              weed species  
Online: 01 February 2024  
About author:  YAN He, E-mail: yanhe202204@163.com; CHEN Shuang, E-mail: 369702238@qq.com; #Correspondence ZHANG Yu-ting, E-mail: zyt2018@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

YAN He, CHEN Shuang, ZHAO Jing-kun, ZHANG Zhi-bing, CHEN Lun-lun, HUANG Ren-mei, LIU Yong-min, SHI Xiao-jun, ZHANG Yu-ting. 2024. Dynamic changes in weed abundance and biodiversity following different green manure establishment. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.01.007

Adeux G, Vieren E, Carlesi S, Bàrberi P, Munier-Jolain N, Cordeau S. 2019. Mitigating crop yield losses through weed diversity. Nature Sustainability, 2, 1018-1026.

Alvarez R, Steinbach H S, and De Paepe J L. 2017. Cover crop effects on soils and subsequent crops in the pampas: A meta-analysis. Soil and Tillage Research, 170, 53-65.

Booth B. D., and Swanton C. J. 2002. Assembly theory applied to weed communities. Weed Science, 50(1), 2-13.

Brandsæter L O, Mangerud K, Andersson L, Børresen T, Brodal G, and Melander B. 2020. Influence of mechanical weeding and fertilisation on perennial weeds, fungal diseases, soil structure and crop yield in organic spring cereals. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 70(4), 318-332.

Brennan E B, Boyd N S, Smith R F, and Foster P. 2009. Seeding rate and planting arrangement effects on growth and weed suppression of a legume‐oat cover crop for organic vegetable systems. Agronomy journal, 101(4), 979-988.

Campiglia E, Radicetti E, and Mancinelli R. 2015. Cover crops and mulches influence weed management and weed flora composition in strip‐tilled tomato (Solanum lycopersicum). Weed Research, 55(4), 416-425.

Campiglia E, Radicetti E, Brunetti P, and Mancinelli R. 2014. Do cover crop species and residue management play a leading role in pepper productivity?. Scientia Horticulturae, 166, 97-104.

Ciaccia C, Testani, E, Amoriello T, and Ceccarelli D. 2022. Weed community evolution under diversification managements in a new planted organic apricot orchard. Agriculture, Ecosystems & Environment, 335, 108014.

Falfushynska H, Khatib I, Kasianchuk N, Lushchak O, Horyn O, and Sokolova I M. 2022. Toxic effects and mechanisms of common pesticides (Roundup and chlorpyrifos) and their mixtures in a zebrafish model (Danio rerio). Science of The Total Environment, 833, 155236.

Finney D M, White C M, and Kaye J P. 2016. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal, 108(1), 39-52.

Gao S, Zhou G, Chang D, Liang H, Nie J, Liao Y, Lu Y, Xu c, Liu J, Wu J, Han S, Wang H, Liu C, Lv Y, Huang Y, He C, Geng M, Wang J, He T, Li Z, Liang H, Li S, Robert M R, Kristian T K, Cao W. 2023. Southern China can produce more high-quality rice with less N by green manuring. Resources, Conservation and Recycling, 196, 107025.

Gómez‐Fernández A, and Milla R. 2022. How seeds and growth dynamics influence plant size and yield: Integrating trait relationships into ontogeny. Journal of Ecology, 110(11), 2684-2700.

Hu Y, Zhan P, Thomas B W., Zhao J, Zhang X, Yan H, Zhang Z, Chen S, Shi X, and Zhang Y 2022. Organic carbon and nitrogen accumulation in orchard soil with organic fertilization and cover crop management: A global meta-analysis. Science of The Total Environment, 852, 158402.

Jang S J, Mallory-Smith C, and Kuk Y I. 2020. Inhibition of wheat growth planted after glyphosate application to weeds. Weed Science, 68(4), 373-381.

Jeschke J M. 2014. General hypotheses in invasion ecology. Diversity and Distributions, 20(11), 1229-1234.

Kruidhof H M, Bastiaans L, and Kropff M J. 2009. Cover crop residue management for optimizing weed control. Plant and soil, 318(1), 169-184.

Lawley Y E, Weil R R, Teasdale J R. 2011. Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agronomy journal, 103(1), 137-144.

Liu R, Thomas B W, Shi X, Zhang X, Wang Z, and Zhang Y. 2021. Effects of ground cover management on improving water and soil conservation in tree crop systems: A meta-analysis. Catena, 199, 105085.

Liu Z, Ge X, Fu Z, and Liu J. 2020. Alternanthera philoxeroides invasion affects the soil seed bank of reed community. Environmental and Experimental Botany, 180, 104196.

MacLaren C, Storkey J, Menegat A, Metcalfe H, and Dehnen-Schmutz K. 2020. An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40(4), 1-29.

Manalil S, and Chauhan B S. 2019. Interference of turnipweed (Rapistrum rugosum) and Mexican pricklepoppy (Argemone mexicana) in wheat. Weed Science, 67(6), 666-672.

Meiss H, Le Lagadec L, Munier-Jolain N, Waldhardt R, and Petit S. 2010. Weed seed predation increases with vegetation cover in perennial forage crops. Agriculture, ecosystems & environment, 138(1-2), 10-16.

Mirsky S B, Ryan M R, Teasdale J R, Curran W S, Reberg-Horton C S, Spargo J T, Wells S M, Keene C L, and Moyer J W. 2013. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technology, 27(1), 193-203.

Monteiro A, and Santos S. 2022. Sustainable approach to weed management: The role of precision weed management. Agronomy, 12(1), 118.

Morselli N, Puglia M, Pedrazzi S, Muscio A, Tartarini P, and Allesina G. 2022. Energy, environmental and feasibility evaluation of tractor-mounted biomass gasifier for flame weeding. Sustainable Energy Technologies and Assessments, 50, 101823.

Muhammad I, Wang J, Sainju U M, Zhang S, Zhao F, and Khan A. 2021. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma, 381, 114696.

Novara A, Stallone G, Cerdà A, and Gristina L. 2019. The effect of shallow tillage on soil erosion in a semi-arid vineyard. Agronomy, 9(5), 257.

Osipitan O A, Dille J A, Assefa Y, Radicetti E, Ayeni A, and Knezevic S Z. 2019. Impact of cover crop management on level of weed suppression: a meta‐analysis. Crop Science, 59(3), 833-842.

Pittman K B, Barney J N, and Flessner M L. 2020. Cover crop residue components and their effect on summer annual weed suppression in corn and soybean. Weed science, 68(3), 301-310.

Rakotomanga D, Lacoma M, Dorel M, and Damour G. 2021. Cover crops combined with soil tillage impact the spontaneous species density, richness and diversity in banana cover cropping systems. Agronomy for Sustainable Development, 41(3), 1-11.

Ranji A, Parashkoohi M G, Zamani D M, and Ghahderijani M. 2022. Evaluation of agronomic, technical, economic, and environmental issues by analytic hierarchy process for rice weeding machine. Energy Reports, 8, 774-783.

Reberg-Horton S C, Grossman J M, Kornecki T S, Meijer A D, Price A J, Place G T, and Webster T M. 2012. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renewable Agriculture and Food Systems, 27(1), 41-48.

Restuccia A, Scavo A, Lombardo S, Pandino G, Fontanazza S, Anastasi U, Abbate C, Mauromicale G. 2020. Long-term effect of cover crops on species abundance and diversity of weed flora. Plants, 9(11), 1506.

Richardson D M, Pyšek P. 2007. Elton, CS 1958: The ecology of invasions by animals and plants. London: Methuen. Progress in Physical Geography, 31(6), 659-666.

Ringselle B, De Cauwer B, Salonen J, and Soukup J. 2020. A review of non-chemical management of couch grass (Elymus repens). Agronomy, 10(8), 1178.

Rose M T, Cavagnaro T R, Scanlan C A, Rose T J, Vancov T, Kimber S, Kennedy I R, Kookana R S, Van Zwieten, L. 2016. Impact of herbicides on soil biology and function. Advances in agronomy, 136, 133-220.

Saini M, Price A J, Van Santen E. 2006, June. Cover crop residue effects on early-season weed establishment in a conservation-tillage corn-cotton rotation. In 28th Southern Conservation Tillage Conference (Vol. 28, pp. 175-178).

Scavo A, Fontanazza S, Restuccia A, Pesce G R, Abbate C, Mauromicale G. 2022. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agronomy for Sustainable Development, 42(5), 93.

Scavo A, Restuccia A, Lombardo S, Fontanazza S, Abbate C, Pandino G, Anastasi U, Onofri A, and Mauromicale G. 2020. Improving soil health, weed management and nitrogen dynamics by Trifolium subterraneum cover cropping. Agronomy for Sustainable Development, 40(3), 1-12.

Schwartz-Lazaro L M, Copes J T. 2019. A review of the soil seedbank from a weed scientists perspective. Agronomy, 9(7), 369.

Shahzad M, Farooq M, Jabran K, and Hussain M. 2016. Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop protection, 89, 161-169.

Sharkey S M, Hartig A M, Dang A J, Chatterjee A, Williams B J, Parker K M. 2022. Amine Volatilization from Herbicide Salts: Implications for Herbicide Formulations and Atmospheric Chemistry. Environmental Science & Technology.

Simpson K J, Atkinson R R, Mockford E J, Bennett C, Osborne C P, and Rees M. 2021. Large seeds provide an intrinsic growth advantage that depends on leaf traits and root allocation. Functional Ecology, 35(10), 2168-2178.

Smith R G, Warren N D, Cordeau S. 2020. Are cover crop mixtures better at suppressing weeds than cover crop monocultures?. Weed science, 68(2), 186-194.

Storkey J, Neve P. 2018. What good is weed diversity?. Weed Research, 58(4), 239-243.

Sturm D J, Peteinatos G, Gerhards R. 2018. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research, 58(5), 331-337.

Suproniene S, Kadziene G, Irzykowski W, Sneideris D, Ivanauskas A, Sakalauskas S, Serbiak P, Svegzda P, Auskalniene O, Jedryczka M. 2019. Weed species within cereal crop rotations can serve as alternative hosts for Fusarium graminearum causing Fusarium head blight of wheat. Fungal Ecology, 37, 30-37.

Tosin M, Barbale M, Chinaglia S, Degli-Innocenti F. 2020. Disintegration and mineralization of mulch films and leaf litter in soil. Polymer Degradation and Stability, 179, 109309.

Turrini A, Caruso G, Avio L, Gennai C, Palla M, Agnolucci M, Tomei E P, Giovannetti M, Gucci R. 2017. Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. Applied Soil Ecology, 116, 70-78.

Uchino H, Iwama K, Jitsuyama Y, Ichiyama K, Sugiura E, and Yudate T 2011. Stable characteristics of cover crops for weed suppression in organic farming systems. Plant Production Science, 14(1), 75-85.

Yang Y, Zhang S, Wang S, Liu Z, Fang L, Zhang X, Liu, R., Zhang J, Zhang Y, Shi X. 2020. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China. Acta Prataculturae Sinica, 29(6), 39 (in Chinese)

No related articles found!
No Suggested Reading articles found!