Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Low rumen degradable starch reduces diarrhea and colonic inflammation by influencing the whole gastrointestinal microbiota and metabolite flow in dairy goats
Chunjia Jin1, 2, Ziqi Liang1, 2, Xiaodong Su1, 2, Peiyue Wang1, 2, Xiaodong Chen1, 2, Yue Wang1, 2, Xinjian Lei1, 2, Junhu Yao1, 2#, Shengru Wu1, 2#

1 College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China

2 Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  淀粉是反刍动物重要的能量来源,反刍动物采食高淀粉日粮提高了瘤胃可降解淀粉(RDS)水平,导致瘤胃酸中毒和后肠炎症。目前高淀粉日粮引起反刍动物后肠功能障碍机制尚不明确,有关后肠道微生物如何调控后肠道健康的研究较为深入,但仍缺乏基于消化道层面的整体性考虑。本研究整合了瘤胃、空肠、回肠和结肠微生物、代谢物和宿主转录组数据,探究基于消化道微生物和代谢物流转的前对后肠基因表达的影响。试验选取40只体重相近、健康的3月龄青年奶山羊随机均分两组,分别饲喂低RDS日粮(LRDS,整粒玉米RDS=13.85%,n=20和高RDS日粮(HRDS,粉碎玉米,RDS=20.74%,n=20日粮,饲喂90 d发现与HRDS组相比,LRDS组腹泻率明显降低。根据粪便评分每组挑选6只羊进行屠宰取样,发现LRDS可显著降低腹泻率和结肠病理评分。转录组学结果显示,LRDS降低了空肠、回肠和结肠的炎症相关基因的表达。16S rRNA测序结果显示,LRDS组小肠和后肠有益共生菌的相对丰度增加,致病菌的相对丰度降低。根据生态位宽度计算微生物在消化道内的流转分布,确定了8个核心菌属。代谢组学结果显示,在不同的消化道部位共鉴定出554种代谢物。将代谢物分为3个模块:在当前消化道位点丰度增加的代谢物(ICS),无差异流入当前消化道位点的代谢物(UICS),在当前消化道位点丰度减少的代谢物(DCS)。组学可解释性分析表明,UICS对空肠、回肠和结肠基因表达的组学可解释性超过10%。结肠UICS中,1-棕榈酰甘油和脱氧胆酸分别对结肠免疫相关差异基因的组学可解释性为60.74%和11.5%,表明消化道UICS,尤其是1-棕榈酰甘油和脱氧胆酸,可能会影响结肠免疫相关基因的差异表达。本研究初步探究了奶山羊消化道宿主-微生物互作效应的模式,即消化道微生物及其代谢物流转对消化道基因表达存在影响,肠可通过代谢物的流转影响后肠基因表达。

Abstract  Postruminal intestinal inflammation and hindgut acidosis caused by increased dietary starch supply and thereby increased quantities of ruminal degradable starch (RDS) in ruminants have been widely studied. Although the roles of the microbiota in mediating hindgut health that are focused on the hindgut have been widely studied, the absence of whole gastrointestinal insight may influence the depth of research. We integrated the microbiome, metabolome, and host transcriptome changes in the rumen, jejunum, ileum, and colon to investigate the contributions of foregut changes to hindgut gene expression driven by gastrointestinal microbiota and metabolite flow. Forty goats were randomly assigned to receive either a low rumen degradable starch diet (LRDS, RDS=13.85%, n=20) or a high rumen degradable starch diet (HRDS, RDS=20.74%, n=20). Compared with the high RDS (HRDS) group, the low RDS (LRDS) group significantly decreased the diarrheal rate. Based on the mean values of the fecal scores, 6 represented goats of LRDS group (fecal scores=4.58±0.120) and 6 represented goats of HRDS group (fecal scores=3.53±0.343) were selected for sampling and subsequent analysis. LRDS had significantly decreased the colonic pathologic scores. Transcriptomic analysis revealed that LRDS reduced jejunal, ileal, and colonic inflammatory responses. An increase in beneficial commensals and a decreased abundance of pathogenic genera in the small intestine and hindgut were found in goats fed the LRDS diet using 16S rRNA gene sequencing. To identify microbial transmission as well as the transmission of microbial metabolites, 8 genera were identified as core genera according to their calculated niche width. Metabolomics analysis revealed that a total of 554 metabolites were identified among different gastrointestinal sites. Then, metabolites were incorporated into 3 modules: metabolites increased in the current site (ICS), unchanged inflow metabolites in the current site (UICS), and metabolites decreased in the current site (DCS). The results indicated that the UICS metabolites contributed more than 10% to host gene expression in the jejunum, ileum, and colon. When we further focused on the effects of colonic UICS metabolites on the colonic immune-related differentially expressed genes, the results indicated that 1-palmitoylglycerol and deoxycholic acid contributed 60.74% and 11.5% to the colonic immune-related differentially expressed genes, respectively. Our findings provide a preliminary framework of microbial effects that includes the microbiota and their metabolite changes, especially reduced 1-palmitoylglycerol and deoxycholic acid, in the former gastrointestinal tract that could be involved in the alleviation of colonic inflammation in goats fed LRDS diets.
Keywords:  ruminal degradable starch              matter flow              microbiome, metabolome              colonic inflammation  
Online: 10 May 2024  
Fund: The authors acknowledge all members of the Innovative Research Team of Animal Nutrition & Healthy Feeding of Northwest A&F University for providing assistance. This research was financially supported by the National Natural Science Foundation of China (32072761, 31902184, 32102570) and the Shaanxi Provincial Science and Technology Association Young Talents Lifting Program Project (20220203).
About author:  #Correspondence Junhu Yao, E-mail: yaojunhu2004@sohu.com; Shengru Wu, E-mail: wushengru2013@163.com

Cite this article: 

Chunjia Jin, Ziqi Liang, Xiaodong Su, Peiyue Wang, Xiaodong Chen, Yue Wang, Xinjian Lei, Junhu Yao, Shengru Wu. 2024. Low rumen degradable starch reduces diarrhea and colonic inflammation by influencing the whole gastrointestinal microbiota and metabolite flow in dairy goats. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.04.015

Anders, S., and W. Huber. 2010. Differential expression analysis for sequence count data. Genome Biology, 11:R106

Andersson, J.A., A.G. Peniche, C.L. Galindo, P. Boonma, J. Sha, R.A. Luna, T.C. Savidge, A.K. Chopra, and S.M. Dann. 2020. New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection. mBio, 11:e00053-20.

Bannaga, A., L. Kelman, M. O’Connor, C. Pitchford, J.R.F. Walters, and R.P. Arasaradnam. 2017. How bad is bile acid diarrhoea: an online survey of patient-reported symptoms and outcomes. BMJ Open Gastroenterology, 4:e000116.

Barkun, A., J. Love, M. Gould, H. Pluta, and A.H. Steinhart. 2013. Bile Acid Malabsorption in Chronic Diarrhea: Pathophysiology and Treatment. Canadian Journal of Gastroenterology and Hepatology, 27:653–659.

Benjamini, Y., and Y. Hochberg. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of The Royal Statistical Society Series B, 57:289–300.

Camilleri, M., I. Busciglio, A. Acosta, A. Shin, P. Carlson, D. Burton, M. Ryks, D. Rhoten, J. Lamsam, A. Lueke, L.J. Donato, and A.R. Zinsmeister. 2014. Effect of Increased Bile Acid Synthesis or Fecal Excretion in Irritable Bowel Syndrome-Diarrhea. American Journal of Gastroenterology, 109:1621–1630..

Caporaso, J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7:335–336.

Chambers, M.C., B. Maclean, R. Burke, D. Amodei, D.L. Ruderman, S. Neumann, L. Gatto, B. Fischer, B. Pratt, J. Egertson, K. Hoff, D. Kessner, N. Tasman, N. Shulman, B. Frewen, T.A. Baker, M.-Y. Brusniak, C. Paulse, D. Creasy, L. Flashner, K. Kani, C. Moulding, S.L. Seymour, L.M. Nuwaysir, B. Lefebvre, F. Kuhlmann, J. Roark, P. Rainer, S. Detlev, T. Hemenway, A. Huhmer, J. Langridge, B. Connolly, T. Chadick, K. Holly, J. Eckels, E.W. Deutsch, R.L. Moritz, J.E. Katz, D.B. Agus, M. MacCoss, D.L. Tabb, and P. Mallick. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30:918–920.

Chen, L., J.E. Wilson, M.J. Koenigsknecht, W.-C. Chou, S.A. Montgomery, A.D. Truax, W.J. Brickey, C.D. Packey, N. Maharshak, G.K. Matsushima, S.E. Plevy, V.B. Young, R.B. Sartor, and J.P.-Y. Ting. 2017. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nature Immunology, 18:541–551.

Chen, X., X. Su, J. Li, Y. Yang, P. Wang, F. Yan, J. Yao, and S. Wu. 2021. Real-time monitoring of ruminal microbiota reveals their roles in dairy goats during subacute ruminal acidosis. npj Biofilms and Microbiomes, 7:45.

Chen, Y., F. Yang, H. Lu, B. Wang, Y. Chen, D. Lei, Y. Wang, B. Zhu, and L. Li. 2011. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology, 54:562–572.

David, L.A., C.F. Maurice, R.N. Carmody, D.B. Gootenberg, J.E. Button, B.E. Wolfe, A.V. Ling, A.S. Devlin, Y. Varma, M.A. Fischbach, S.B. Biddinger, R.J. Dutton, and P.J. Turnbaugh. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505:559–563.

de Paula Carlis, M. S., T. U. Sturion, A. L. A. da Silva, N. R. Eckermann, D. M. Polizel, R. G. de Assis, T. de S. Terezinha, C. G. D. J. Paulo, C. S. V. Ana, J. dos S. Isabela a, H. C. Jamile, S. B. Janaina, V. P. Alexandre, and E. M. Ferreira. 2021. Whole corn grain-based diet and levels of physically effective neutral detergent fiber from forage (pefNDF) for feedlot lambs: Digestibility, ruminal fermentation, nitrogen balance and ruminal pH. Small Ruminant Research, 205, 106567.

Difford, G.F., D.R. Plichta, P. Løvendahl, J. Lassen, S.J. Noel, O. Højberg, A.-D.G. Wright, Z. Zhu, L. Kristensen, H.B. Nielsen, B. Guldbrandtsen, and G. Sahana. 2018. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. Plos Genetics, 14:e1007580.

Esterházy, D., M.C.C. Canesso, L. Mesin, P.A. Muller, T.B.R. de Castro, A. Lockhart, M. ElJalby, A.M.C. Faria, and D. Mucida. 2019. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature, 569:126–130..

García-Nieto, P.E., B. Wang, and H.B. Fraser. 2022. Transcriptome diversity is a systematic source of variation in RNA-sequencing data. PLOS Computational Biology, 18:e1009939.

Ghaisas, S., J. Maher, and A. Kanthasamy. 2016. Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics,. 158:52–62.

Grauso, M., A. Lan, M. Andriamihaja, F. Bouillaud, F. Blachier. 2019. Hyperosmolar environment and intestinal epithelial cells: Impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Scientific Reports,. 11360.

Gressley, T.F., M.B. Hall, and L.E. Armentano. 2011. RUMINANT NUTRITION SYMPOSIUM: Productivity, digestion, and health responses to hindgut acidosis in ruminants1. Journal of Animal Science, 89:1120–1130.

Gu, Z., L. Li, S. Tang, C. Liu, X. Fu, Z. Shi, and H. Mao. 2018. Metabolomics Reveals that Crossbred Dairy Buffaloes Are More Thermotolerant than Holstein Cows under Chronic Heat Stress. Journal of Agricultural and Food Chemistry, 66:12889–12897.

Han, X., X. Lei, X. Yang, J. Shen, L. Zheng, C. Jin, Y. Cao, and J. Yao. 2021. A Metagenomic Insight Into the Hindgut Microbiota and Their Metabolites for Dairy Goats Fed Different Rumen Degradable Starch. Frontiers In Microbiology,. 12:651631.

He, Z., Y. Ma, S. Yang, S. Zhang, S. Liu, J. Xiao, Y. Wang, W. Wang, H. Yang, S. Li, and Z. Cao. 2022. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome, 10:79.

Honda, K., and D.R. Littman. 2016. The microbiota in adaptive immune homeostasis and disease. Nature, 535:75–84.

Ibnou-Zekri, N., S. Blum, E.J. Schiffrin, and T. von der Weid. 2003. Divergent Patterns of Colonization and Immune Response Elicited from Two Intestinal Lactobacillus Strains That Display Similar Properties In Vitro. Infection and Immunity, 71:428–436.

Imai, J., H. Ichikawa, S. Kitamoto, J.L. Golob, M. Kaneko, J. Nagata, M. Takahashi, M.G. Gillilland, R. Tanaka, H. Nagao-Kitamoto, A. Hayashi, K. Sugihara, S. Bishu, S. Tsuda, H. Ito, S. Kojima, K. Karakida, M. Matsushima, T. Suzuki, K. Hozumi, N. Watanabe, W.V. Giannobile, T. Shirai, H. Suzuki, and N. Kamada. 2021. A potential pathogenic association between periodontal disease and Crohn’s disease. JCI Insight, 6:e148543.

Jin, C., X. Su, P. Wang, Z. Liang, X. Lei, H. Bai, and J. Yao. 2023. Effects of rumen degradable starch on growth performance, carcass, rumen fermentation, and ruminal VFA absorption in growing goats. Animal Feed Science and Technology, 299: 115618.

Kakiyama, G., W.M. Pandak, P.M. Gillevet, P.B. Hylemon, D.M. Heuman, K. Daita, H. Takei, A. Muto, H. Nittono, J.M. Ridlon, M.B. White, N.A. Noble, P. Monteith, M. Fuchs, L.R. Thacker, M. Sikaroodi, and J.S. Bajaj. 2013. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. Journal of Hepatology, 58:949–955.

Kang, C., B. Wang, K. Kaliannan, X. Wang, H. Lang, S. Hui, L. Huang, Y. Zhang, M. Zhou, M. Chen, and M. Mi. 2017. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. mBio, 8:e00470-17.

Kokou, F., G. Sasson, J. Friedman, S. Eyal, O. Ovadia, S. Harpaz, A. Cnaani, and I. Mizrahi. 2019. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nature Microbiology, 4:2456–2465.

Kong, C., X. Yan, Y. Liu, L. Huang, Y. Zhu, J. He, R. Gao, M.F. Kalady, A. Goel, H. Qin, and Y. Ma. 2021. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduction and Targeted Therapy, 6:154.

Kuhl, C., R. Tautenhahn, and S. Neumann. 2010. LC‒MS peak annotation and identification with CAMERA. Analytical Chemistry, 84:1–14.

Le, D., P. Nguyen, D. Nguyen, K. Dierckens, N. Boon, T. Lacoere, F.-M. Kerckhof, J. De Vrieze, O. Vadstein, and P. Bossier. 2020. Gut Microbiota of Migrating Wild Rabbit Fish (Siganus guttatus) Larvae Have Low Spatial and Temporal Variability. Microbial Ecology, 79:539–551.

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25:1754–1760.

Li, K., M. Bihan, and B.A. Methé. 2013. Analyses of the Stability and Core Taxonomic Memberships of the Human Microbiome. PLoS ONE, 8:e63139.

Li, S., E. Khafipour, D.O. Krause, A. Kroeker, J.C. Rodriguez-Lecompte, G.N. Gozho, J.C. Plaizier. 2012. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. Journal of Dairy Science, 95: 294-303.

Liang, Z., C. Jin, H. Bai, G. Liang, X. Su, D. Wang, and J. Yao. 2022. Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway. Animal Nutrtion, 13:1-8.

Litvak, Y., and A.J. Bäumler. 2019. Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 51:214–224.

Liu, J., T. Xu, W. Zhu, and S. Mao. 2014. High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats. British Journal of Nutrition, 112:416–427.

Livak, K.J., and T.D. Schmittgen. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25:402–408.

Luo, D., T. Deng, W. Yuan, H. Deng, and M. Jin. 2017. Plasma metabolomic study in Chinese patients with wet age-related macular degeneration. BMC Ophthalmology,. 17:165..

Mangifesta, M., L. Mancabelli, C. Milani, F. Gaiani, N. de’Angelis, G.L. de’Angelis, D. van Sinderen, M. Ventura, and F. Turroni. 2018. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Scientific Reports, 8:13974.

Mars, R.A.T., Y. Yang, T. Ward, M. Houtti, S. Priya, H.R. Lekatz, X. Tang, Z. Sun, K.R. Kalari, T. Korem, Y. Bhattarai, T. Zheng, N. Bar, G. Frost, A.J. Johnson, W. van Treuren, S. Han, T. Ordog, M. Grover, J. Sonnenburg, M. D’Amato, M. Camilleri, E. Elinav, E. Segal, R. Blekhman, G. Farrugia, J.R. Swann, D. Knights, and P.C. Kashyap. 2020. Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell, 182:1460-1473.e17.

McDaniel, M. R., L. N. Tracey, N. A. Cole, S. L. Ivey, C. A. Löest. 2021. Evaluation of whole corn substitution in diets based on steam-flaked corn containing different concentrations of wet distillers grains with solubles for beef cattle. Applied Animal Science, 37(2): 140-154.

Nanjundaiah, Y.S., D.A. Wright, A.R. Baydoun, Z. Khaled, Z. Ali, P. Dean, and M.H. Sarker. 2020. Modulation of Macrophage Function by Lactobacillus-Conditioned Medium. Frontiers in Cell and Developmental Biology,. 8:723.

Neu, A.T., E.E. Allen, and K. Roy. 2021. Defining and quantifying the core microbiome: Challenges and prospects. Proceedings of the National Academy of Sciences, 118:e2104429118.

Neurath, M.F., I. Fuss, B.L. Kelsall, E. Stüber, and W. Strober. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice.. Journal of Experimental Medicine, 182:1281–1290.

Owens, F., and S. Soderlund. 2006. Ruminal and postruminal starch digestion by cattle. Pages 15–17 in Cattle Grain Processing Symposium. Oklahoma State University Tulsa, OK.

Pang, Z., J. Chong, G. Zhou, D.A. de Lima Morais, L. Chang, M. Barrette, C. Gauthier, P.-É. Jacques, S. Li, and J. Xia. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49:W388–W396.

Peng, Y., Y. Yan, P. Wan, D. Chen, Y. Ding, L. Ran, J. Mi, L. Lu, Z. Zhang, X. Li, X. Zeng, and Y. Cao. 2019. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biology and Medicine,. 136:96–108.

Pertea, M., D. Kim, G.M. Pertea, J.T. Leek, and S.L. Salzberg. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11:1650–1667.

Plaizier, J. C., D.O. Krause, G.N. Gozho, and B.W. McBride. 2008. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary Journal, 176: 21-31.

Qi, D., W. Shi, A.R. Black, M.A. Kuss, X. Pang, Y. He, B. Liu, and B. Duan. 2020. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials, 240:119832.

Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F.O. Glöckner. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41:D590–D596.

Rivett, D.W., T. Scheuerl, C.T. Culbert, S.B. Mombrikotb, E. Johnstone, T.G. Barraclough, and T. Bell. 2016. Resource-dependent attenuation of species interactions during bacterial succession. ISME Journal, 10:2259–2268.

Rivière, A., M. Selak, D. Lantin, F. Leroy, and L. De Vuyst. 2016. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers In Microbiology, 7:00979.

Rogers, A.W.L., R.M. Tsolis, and A.J. Bäumler. 2021b. Salmonella versus the Microbiome. Microbiology And Molecular Biology Reviews, 85:e00027-19.

Saito, R., M. Sugimoto, A. Hirayama, T. Soga, M. Tomita, and T. Takebayashi. 2021. Quality Assessment of Untargeted Analytical Data in a Large-Scale Metabolomic Study. Journal of Clinical Medicine, 10:1826.

Sanz-Fernandez, M.V., J.-B. Daniel, D.J. Seymour, S.K. Kvidera, Z. Bester, J. Doelman, and J. Martín-Tereso. 2020. Targeting the Hindgut to Improve Health and Performance in Cattle. Animals, 10:1817.

Scott, S.A., J. Fu, and P.V. Chang. 2020. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences, 117:19376–19387.

Shen, J., L. Zheng, X. Chen, X. Han, Y. Cao, and J. Yao. 2020. Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Dairy Goats Fed Different Rumen Degradable Starch. Frontiers In Microbiology, 11:1003.

Smith, C.A., E.J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. 2006. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry, 78:779–787.

Spor, A., O. Koren, and R. Ley. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 9:279–290.

Star, B., T.H. Haverkamp, S. Jentoft, and K.S. Jakobsen. 2013. Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BMC Microbiology, 13:248.

Stojanov, S., A. Berlec, and B. Štrukelj. 2020. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8:1715.

Tang, Z., B. Shi, W. Sun, Y. Yin, Q. Chen, T. Mohamed, C. Lu, and Z. Sun. 2020. Tryptophan promoted β-defensin-2 expression via the mTOR pathway and its metabolites: kynurenine banding to aryl hydrocarbon receptor in rat intestine. RSC Advances, 10:3371–3379.Thevenot, E.A. 2016. ropls: PCA, PLS (-DA) and OPLS (-DA) for multivariate analysis and feature selection of omics data. R Package Version 1.

Tiffany, C.R., and A.J. Bäumler. 2019. Dysbiosis: from fiction to function. Am. J. Physiol.-Gastrointest. Liver Physiology, 317:G602–G608.

Turnbaugh, P.J., F. Bäckhed, L. Fulton, and J.I. Gordon. 2008. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe, 3:213–223.

Van Soest, P.J., J.B. Robertson, and B.A. Lewis. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74:3583–3597.

Wang, L., W. Qi, S. Mao, W. Zhu, and J. Liu. 2022. Effects of whole corn high-grain diet feeding on ruminal bacterial community and epithelial gene expression related to VFA absorption and metabolism in fattening lambs. Journal of Animal Science, 100(3): skac056.

Wang, M.Y., Y. Li, M. Gao, L.W. Song, M. Xu, X.L. Zhao, Y. Jia, M. Zhao, Y.Y. Sun, and H.L. Hu. 2021. Effects of subacute ruminal acidosis on colon epithelial morphological structure, permeability, and expression of key tight junction proteins in dairy goats. Journal of Dairy Science, 104:4260–4270.

Waters, J.L., and R.E. Ley. 2019. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 17:83.

Wei, W., H.-F. Wang, Y. Zhang, Y.-L. Zhang, B.-Y. Niu, and S.-K. Yao. 2020. Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome. World Journal of Gastroenterology, 26:7153–7172.

Williamson, G., and M.N. Clifford. 2017. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 139:24–39.

Xue, M.-Y., H.-Z. Sun, X.-H. Wu, J.-X. Liu, and L.L. Guan. 2020. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome, 8:64.

Yang, C., Y. Qu, Y. Fujita, Q. Ren, M. Ma, C. Dong, and K. Hashimoto. 2017. Possible role of the gut microbiota–brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Translational Psychiatry, 7:1294.

Ye, H., J. Liu, P. Feng, W. Zhu, and S. Mao. 2016a. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Scientific Reports, 6:20329.

Zebeli, Q., D. Mansmann, H. Steingass, and B.N. Ametaj. 2010. Balancing diets for physically effective fiber and ruminally degradable starch: a key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livestock Science, 127: 1-10

Zhang, J., and M.J. Zhang. 2013. Package ‘spaa’. R Package Version 1.

Zheng, L., S. Wu, J. Shen, X. Han, C. Jin, X. Chen, S. Zhao, Y. Cao, and J. Yao. 2020. High rumen degradable starch decreased goat milk fat via trans-10, cis-12 conjugated linoleic acid-mediated downregulation of lipogenesis genes, particularly, INSIG1. Journal of Animal Science And Biotechnology, 11:30.

Ørskov, E. R., and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92(2), 499-503.

No related articles found!
No Suggested Reading articles found!