Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in mediterranean wheats. Field Crops Research, 122, 40-48.
Bareth G, Bolten A, Gnyp M L, Reusch S, Jasper J. 2016. Comparison of uncalibrated RGBVI with spectrometer-based NDVI derived from UAV sensing systems on field scale. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41, 837-843.
Berry P M, Spink J. 2012. Predicting yield losses caused by lodging in wheat. Field Crops Research, 137, 19-26.
Broge N H, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156-172.
Cao Q, Miao Y, Feng G, Gao X, Li F, Liu B, Yue S, Cheng S, Ustin S L, Khosla R. 2015. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54-67.
Chandel A K, Khot L R, Yu L X. 2021. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique. Computers and Electronics in Agriculture, 182, 105999.
Chauhan S, Darvishzadeh R, Boschetti M, Pepe M, Nelson A. 2019. Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 124-140.
Choubin B, Solaimani K, Habibnejad R M, Malekian A. 2017. Watershed classification by remote sensing indices: A fuzzy c-means clustering approach. Journal of Mountain Science, 14, 2053-2063.
Dash J, Curran P J. 2007. Evaluation of the meris terrestrial chlorophyll index (MTCI). Advances in Space Research, 39, 100-104.
Duan B, Fang S H, Gong Y, Peng Y, Wu X T, Zhu R S. 2021. Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone. Field Crops Research, 267, 108104.
Fan Y G, Feng H K, Yue J B, Jin X L, Liu Y, Chen R Q, Bian M B, Ma Y P, Song X Y, Yang G J. 2023. Using an optimized texture index to monitor the nitrogen content of potato plants over multiple growth stages. Computers and Electronics in Agriculture, 212, 108147.
Fei S P, Hassan M A, Xiao Y G, Su X, Chen Z, Cheng Q, Duan F Y, Chen R Q, Ma Y T. 2023. Uav-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 24, 187-212.
Fu P, Meacham-Hensold K, Guan K, Bernacchi C J. 2019. Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science, 10, 730.
Feng Z H, Song L, Duan J Z, He L, Zhang Y Y, Wei Y K, Feng W. 2022a. Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion. Sensors, 22, 31-50.
Feng Z H, Guan H W, Yang T C, He L, Duan J Z, Song L, Wang C Y, Feng W. 2023b. Estimating the canopy chlorophyll content of winter wheat under nitrogen deficiency and powdery mildew stress using machine learning. Computers and Electronics in Agriculture, 211, 107989.
Gitelson A A. 2004a. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165-173.
Gitelson A A, Merzlyak M N. 1998b. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22, 689-692.
Gitelson A A, Viña A, Ciganda V, Rundquist D C, Arkebauer T J. 2005c. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403.
Gitelson A A , Zur Y, Chivkunova O B, Merzlyak M N. 2002d. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol, 75, 272-281.
Goel N S, Qin W. 1994. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sensing Reviews, 10, 309-347.
Gong P, Pu R L, Biging G S, Larrieu M R. 2003. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 41, 1355-1362.
Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A. 2006. A kernel method for the two-sample-problem. Advances in Neural Information Processing Systems, 19, 513–520.
Guo J, Tian G, Zhou Y, Wang M, Ling N, Shen Q, Guo S. 2016. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research, 196, 463-472.
Han J C, Zhang Z, Cao J, Luo Y C, Zhang L L, Li Z Y, Zhang J. 2020. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 12, 236-258.
Hu X Q, Sun L, Gu X H, Sun Q, Wei Z H, Pan Y C, Chen L P. 2021. Assessing the self-recovery ability of maize after lodging using UAV-LIDAR data. Remote Sensing, 13, 2270-2292.
Ji J T, Li N N, Cui H W, Li Y C, Zhao X B, Zhang H L, Ma H. 2023. Study on monitoring spad values for multispatial spatial vertical scales of summer maize based on UAV multispectral remote sensing. Agriculture-Basel, 13, 1004-1019.
Ji Y S, Liu R, Xiao Y G, Cui Y X, Chen Z, Zong X X, Yang T. 2023. Faba bean above-ground biomass and bean yield estimation based on consumer-grade unmanned aerial vehicle rgb images and ensemble learning. Precision Agriculture, 24, 1439-1460.
Jiang J, Atkinson, P M, Chen C S, Cao Q, Tian Y C, Zhu Y, Liu X J, Cao W X. 2023. Combining UAV and sentinel-2 satellite multi-spectral images to diagnose crop growth and N status in winter wheat at the county scale. Field Crop Research, 294, 108860.
Jiang Z, Huete A R, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing Environment, 112, 3833-3845.
Kendall S L, Holmes H, White C A, Clarke S M, Berry P M. 2017. Quantifying lodging-induced yield losses in oilseed rape. Field Crop Research, 211, 106-113.
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521, 436–444.
Li L C, Wang B, Feng P Y, Liu D L, He Q S, Zhang Y J, Wang Y K, Li S Y, Lu X L, Yue C, Li Y, He J Q, Feng H, Yang G J, Yu Q. 2022. Developing machine learning models with multi-source environmental data to predict wheat yield in China. Computers and Electronics in Agriculture, 194, 106790.
Li T, Zhong X C, Jiang M, Jin X L, Zhou P, Liu S P, Sun C M, Guo W S. 2018. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252, 144-154.
Li W J, Weiss M, Garric B, Champolivier L, Jiang J Y, Wu W B, Baret F. 2023. Mapping crop leaf area index and canopy chlorophyll content using UAV multispectral imagery: Impacts of illuminations and distribution of input variables. Remote Sensing, 15, 1539-1552.
Li W Y, Wu W X, Yu M L, Tao H Y, Yao X, Cheng T, Zhu Y, Cao W X, Tian Y C. 2023. Monitoring rice grain protein accumulation dynamics based on UAV multispectral data. Field Crops Research, 294, 108858.
Liu Y, Nie C W, Zhang Z, Wang Z X, Ming B, Xue J, Yang H Y, Xu H G, Meng L, Cui N B, Wu W B, Jin X L. 2023. Evaluating how lodging affects maize yield estimation based on UAV observations. Frontiers in Plant Science, 13, 979103.
Long M S, Wang J M, Ding G G, Sun J G, Yu P S. 2013. Transfer feature learning with joint distribution adaptation. IEEE International Conference on Computer Vision, 2013, 2200–2207.
Lv S X, Peng L, Hu H L, Wang L. 2022. Effective machine learning model combination based on selective ensemble strategy for time series forecasting. Information Sciences, 612, 994-1023.
Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi F B. 2020. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing Environment, 237, 111599.
Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135-141.
Patil A E, Deosarkar D B, Khatri N, Ubale A B. 2023. Comprehensive investigation of Genotype-Environment interaction effects on seed cotton yield contributing traits in Gossypium hirsutum L. using multivariate analysis and artificial neural network. Computers and Electronics in Agriculture, 211, 107966.
Paula M R A, Lucas P O, Danielle E G F, Wesley N G, Dthenifer C S, Larissa P R T, Carlos A D S J, Guilherme F C-S, Jonathan L, Fábio H R B, José M J, Paulo E T, Hemerson P. 2020. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Computers and Electronics in Agriculture, 178, 105791.
Penuelas J, Filella I, Lloret P, Munoz F, Vilajeliu M. 1995. Reflectance assessment of mite effects on apple-trees. International Journal of Remote Sensing, 16, 2727-2733.
Qi J, Kerr Y H, Moran M S, Weltz M, Huete A R, Sorooshian S, Bryant R. 2000. Leaf area index estimates using remotely sensed data and brdf models in a semiarid region. Remote Sensing Environment, 73, 18-30.
Qu H, Zheng C, Ji H, Barai K, Zhang Y J. 2024. A fast and efficient approach to estimate wild blueberry yield using machine learning with drone photography: Flight altitude, sampling method and model effects. Computers and Electronics in Agriculture, 216, 108543.
Reyniers M, Walvoort D J J, De Baardemaaker J. 2006. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 27, 4159-4179.
Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing Environment, 55, 95-107.
Roth L, Aasen H, Walter A, Liebisch F. 2018. Extracting leaf area index using viewing geometry effects-a new perspective on high-resolution unmanned aerial system photography. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 161-175.
Shah A N, Tanveer M, Rehman A U, Anjum S A, Iqbal J, Ahmad R. 2017. Lodging stress in cereal-effects and management: An overview. Environmental Science and Pollution Research, 24, 5222-5237.
Shen L, He Y, Guo X. 2013. Suitability of the normalized difference vegetation index and the adjusted transformed soil-adjusted vegetation index for spatially characterizing loggerhead shrike habitats in north american mixed prairie. Journal of Applied Remote Sensing, 7, 073574.
Sishodia R P, Ray R L, Singh S K. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12, 3136-3167.
Sun Q, Gu X H, Chen L P, Xu X B, Wei Z H, Pan Y C, Gao Y B. 2022. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Computers and Electronics in Agriculture, 193, 106671.
Tang X P, Liu H J, Feng D X, Zhang W J, Chang J, Li L, Yang L. 2022. Prediction of field winter wheat yield using fewer parameters at middle growth stage by linear regression and the bp neural network method. European Journal of Agronomy, 141, 126621.
Wan L, Zhou W L, He Y, Wanger T C, Cen H Y. 2022. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sensing Environment, 269, 112826.
Wang J D, Chen Y Q, Hao S J, Feng W J, Shen Z Q. 2017. Balanced Distribution Adaptation for Transfer Learning. 2017 IEEE International Conference on Data Mining (ICDM), 2017, 1129-1134.
Wood E M, Pidgeon A M, Radeloff V C, Keuler N S. 2012. Image texture as a remotely sensed measure of vegetation structure. Remote Sensing Environment, 121, 516-526.
Xiao G L, Zhang X Y, Niu Q D, Li X G, Li X C, Zhong L H, Huang J X. 2024. Winter wheat yield estimation at the field scale using Sentinel-2 data and deep learning. Computers and Electronics in Agriculture, 216, 108555.
Yang N, Zhang Z T, Zhang J R, Guo Y H, Yang X Z, Yu G D, Bai X Q, Chen J Y, Chen Y W, Shi L S, Li X W. 2023. Improving estimation of maize leaf area index by combining of UAV-based multispectral and thermal infrared data: The potential of new texture index. Computers and Electronics in Agriculture, 214, 108294.
Yang W B, Zhang S Q, Hou Q L, Gao J G, Wang H X, Chen X C, Liao X Z, Zhang F T, Zhao C P, Qin Z L. 2024. Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat. Journal of Integrative Agriculture, 23, 1105-1117.
Yu W G, Yang G X, Li D, Zheng H B, Yao X, Zhu Y, Cao W X, Qiu L, Cheng T. 2023. Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data. Agricultural and Forest Meteorology, 342, 109729.
Yuan W S, Meng Y, Li Y, Ji Z G, Kong Q M, Gao R, Su Z B. 2023. Research on rice leaf area index estimation based on fusion of texture and spectral information. Computers and Electronics in Agriculture, 211, 108016.
Yue J B, Yang H, Yang G J, Fu Y Y, Wang H, Zhou C Q. 2023. Estimating vertically growing crop above-ground biomass based on UAV remote sensing. Computers and Electronics in Agriculture, 205, 107627.
Zhang H J, Li T, Liu H W, Mai C Y, Yu G J, Li H L, Yu L Q, Meng L Z, Jian D W, Yang L, Li H J, Zhou Y. 2020. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964. Journal of Integrative Agriculture, 19, 138-448.
Zhang H Y, Zhang Y, Liu K D, Lan S, Gao T, Li M Z. 2023. Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms. Computers and Electronics in Agriculture, 213, 108250.
Zhang S H, He L, Duan J Z, Zang S L, Yang T C, Schulthess U R S, Guo T C, Wang C Y, Feng W. 2023. Aboveground wheat biomass estimation from a low-altitude UAV platform based on multimodal remote sensing data fusion with the introduction of terrain factors. Precision Agriculture, 25, 119-145.
Zhang S H, Qi X H, Duan J Z, Yuan X R, Zhang H Y, Feng W. 2024. Comparison of attention mechanism-based deep learning and transfer strategies for wheat yield estimation using multisource temporal drone imagery. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-23.
Zhang W X, Zhou T J, Ye W H, Zhang T Y, Zhang L X, Zhang L X, Wolski P, Risbey J, Wang Z, Min S K, Ramsay H, Brody M, Grimm A, Clark R, Ren K N, Jiang J, Chen X L, Li L, Tang S J, Hu S. 2025. A year marked by extreme precipitation and floods: wheat and climate extremes in 2024. Advances in Atmospheric Sciences, 42, 1045-1063.
Zhou L L, Nie C W, Su T, Xu X B, Song Y, Yin D M, Liu S B, Liu Y D, Bai Y, Jia X, Jin X L. 2023. Evaluating the canopy chlorophyll density of maize at the whole growth stage based on multi-scale UAV image feature fusion and machine learning methods. Agriculture-Basel, 13, 895-917.
|