Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Comparison of multi-model fusion and transfer strategies for wheat yield comprehensive estimation under lodging stress from lodging parameters and multi-source remote sensing data

Yongkang Wei1, 4, Shaohua Zhang1, Ke Wu1, Yahui Li1, Ziheng Feng1, Haiyan Zhang1, 2, Li He1, 2, Jianzhao Duan1, 2, Yonghua Wang1, 2, Binbin Guo3, Yongchao Tian4, Wei Feng1, 2#

1 Agronomy College of Henan Agriculture University/State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China

2 National Wheat Technology Innovation Center, Zhengzhou 450046, China  

3 College of Agronomy, Henan University of Science and Technology, Luoyang 471023, China

4 National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China

 Highlights 

Ÿ The incorporation of the lodging index improves the prediction of wheat yield under lodging stress

Ÿ Stacking ensemble learning model best estimates wheat yield

Ÿ The combination of Balanced distribution adaptation and model updates can effectively improve model transfer performance

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦产量估测关系到人民生活质量和国家粮食安全,特别是受到倒伏胁迫后,小麦光合及成熟进程受到严重阻碍,造成产量损失,快速准确估产对灾情掌握及后续农业管理具有重要意义。本研究使用光谱、结构和温度数据,综合分析多源数据在两种情景下的差异表现,筛选较好表征胁迫条件下小麦产量的差异性参数,同时探讨引入特异性参数(倒伏指数)后, Ridge Regression (RR) Random Forest Regression (RFR) K-Nearest Neighbors (KNN)XGBoost (eXtreme Gradient Boosting), Support Vector Regression (SVR) Stacking ensemble learning (SEL)6种小麦产量估计模型的预测精度变化。与传统模型相比,SEL在倒伏后3天(R2=0.64)、12天(R2=0.70)和综合多时序特征(R2=0.73)平均预测精度最高,同时引入倒伏指数后,各模型预测精度均得到不同程度的提升,SEL模型平均R2分别提升8.19%5.09%6.17%。结合迁移学习方法Transfer Component Analysis(TCA), Joint Distribution Adaptation(JDA), Balanced distribution adaptation(BDA),在仅补充4%目标数据集的情况下均保持稳定的精度,使模型得到较高的迁移预测效果(R2=0.81)。通过优化倒伏胁迫情景下的数据集,并结合集成学习和迁移学习技术,有效提高了倒伏胁迫下小麦产量估测模型的准确性、稳定性及迁移能力,为小麦灾情评估及补救措施制定提供参考。



Abstract  

Estimating wheat yield is crucial for the quality of life and food security of a nation, particularly when crops face lodging stress, which severely hinders photosynthesis and maturation, resulting in yield loss.  Rapid and accurate yield estimation is essential for disaster assessment and subsequent agricultural management.  This study utilizes spectral, structural, and temperature data to comprehensively analyze the differential performance of multi-source data under two scenarios, selecting parameters that effectively represent yield differences under stress conditions.  It also explores how the introduction of a specific parameter (the lodging index) affects the prediction accuracy of six wheat yield estimation models: eXtreme Gradient Boosting (XGBoost), Ridge Regression (RR), Random Forest Regression (RFR), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), and Stacking Ensemble Learning (SEL).  Compared with traditional models, the SEL model had the highest average prediction accuracy at 3 days after lodging (R²=0.64), 12 days after lodging (R²=0.70), and with combined multi-temporal features (R²=0.73).  With the introduction of the lodging index, the prediction accuracy of all models improved to different degrees, and the SEL model showing an average R² increase of 8.19, 5.09, and 6.17%, respectively.  Combined with the transfer learning methods such as transfer component analysis (TCA), joint distribution adaptation (JDA), and balanced distribution adaptation (BDA), the model maintained stable accuracy even with only 4% of the target dataset supplemented, achieving a high transfer prediction performance (R²=0.81).  By optimizing the dataset under lodging stress scenarios and integrating ensemble learning and transfer learning techniques, the accuracy, stability, and transferability of wheat yield estimation models under lodging stress were effectively improved, providing a reference for wheat disaster assessment and the formulation of remedial measures.

Keywords:  yield              wheat       lodging       multi-model fusion       transfer strategies   
Online: 09 June 2025  
Fund: 

This work was supported by grants from the Opening Foundation of National Key Laboratory of Crop Science on Wheat and Maize (SKL2022KF03), Henan Agricultural University Science and Technology Collaborative Innovation Project (30501534), and the National Agriculture Technology Research System of China (CARS-03-01-22).

About author:  #Correspondence Wei Feng, Tel/Fax: +86-371-56990188, E-mail: fengwei78@126.com

Cite this article: 

Yongkang Wei, Shaohua Zhang, Ke Wu, Yahui Li, Ziheng Feng, Haiyan Zhang, Li He, Jianzhao Duan, Yonghua Wang, Binbin Guo, Yongchao Tian, Wei Feng. 2025. Comparison of multi-model fusion and transfer strategies for wheat yield comprehensive estimation under lodging stress from lodging parameters and multi-source remote sensing data. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.013

Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in mediterranean wheats. Field Crops Research, 122, 40-48.

Bareth G, Bolten A, Gnyp M L, Reusch S, Jasper J. 2016. Comparison of uncalibrated RGBVI with spectrometer-based NDVI derived from UAV sensing systems on field scale. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41, 837-843.

Berry P M, Spink J. 2012. Predicting yield losses caused by lodging in wheat. Field Crops Research, 137, 19-26.

Broge N H, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156-172.

Cao Q, Miao Y, Feng G, Gao X, Li F, Liu B, Yue S, Cheng S, Ustin S L, Khosla R. 2015. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54-67.

Chandel A K, Khot L R, Yu L X. 2021. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique. Computers and Electronics in Agriculture, 182, 105999.

Chauhan S, Darvishzadeh R, Boschetti M, Pepe M, Nelson A. 2019. Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 124-140.

Choubin B, Solaimani K, Habibnejad R M, Malekian A. 2017. Watershed classification by remote sensing indices: A fuzzy c-means clustering approach. Journal of Mountain Science, 14, 2053-2063.

Dash J, Curran P J. 2007. Evaluation of the meris terrestrial chlorophyll index (MTCI). Advances in Space Research, 39, 100-104.

Duan B, Fang S H, Gong Y, Peng Y, Wu X T, Zhu R S. 2021. Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone. Field Crops Research, 267, 108104.

Fan Y G, Feng H K, Yue J B, Jin X L, Liu Y, Chen R Q, Bian M B, Ma Y P, Song X Y, Yang G J. 2023. Using an optimized texture index to monitor the nitrogen content of potato plants over multiple growth stages. Computers and Electronics in Agriculture, 212, 108147.

Fei S P, Hassan M A, Xiao Y G, Su X, Chen Z, Cheng Q, Duan F Y, Chen R Q, Ma Y T. 2023. Uav-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 24, 187-212.

Fu P, Meacham-Hensold K, Guan K, Bernacchi C J. 2019. Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science, 10, 730.

Feng Z H, Song L, Duan J Z, He L, Zhang Y Y, Wei Y K, Feng W. 2022a. Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion. Sensors, 22, 31-50.

Feng Z H, Guan H W, Yang T C, He L, Duan J Z, Song L, Wang C Y, Feng W. 2023b. Estimating the canopy chlorophyll content of winter wheat under nitrogen deficiency and powdery mildew stress using machine learning. Computers and Electronics in Agriculture, 211, 107989.

Gitelson A A. 2004a. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165-173.

Gitelson A A, Merzlyak M N. 1998b. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22, 689-692.

Gitelson A A, Viña A, Ciganda V, Rundquist D C, Arkebauer T J. 2005c. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403.

Gitelson A A , Zur Y, Chivkunova O B, Merzlyak M N. 2002d. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol, 75, 272-281.

Goel N S, Qin W. 1994. Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sensing Reviews, 10, 309-347.

Gong P, Pu R L, Biging G S, Larrieu M R. 2003. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 41, 1355-1362.

Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A. 2006. A kernel method for the two-sample-problem. Advances in Neural Information Processing Systems, 19, 513–520.

Guo J, Tian G, Zhou Y, Wang M, Ling N, Shen Q, Guo S. 2016. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research, 196, 463-472.

Han J C, Zhang Z, Cao J, Luo Y C, Zhang L L, Li Z Y, Zhang J. 2020. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 12, 236-258.

Hu X Q, Sun L, Gu X H, Sun Q, Wei Z H, Pan Y C, Chen L P. 2021. Assessing the self-recovery ability of maize after lodging using UAV-LIDAR data. Remote Sensing, 13, 2270-2292.

Ji J T, Li N N, Cui H W, Li Y C, Zhao X B, Zhang H L, Ma H. 2023. Study on monitoring spad values for multispatial spatial vertical scales of summer maize based on UAV multispectral remote sensing. Agriculture-Basel, 13, 1004-1019.

Ji Y S, Liu R, Xiao Y G, Cui Y X, Chen Z, Zong X X, Yang T. 2023. Faba bean above-ground biomass and bean yield estimation based on consumer-grade unmanned aerial vehicle rgb images and ensemble learning. Precision Agriculture, 24, 1439-1460.

Jiang J, Atkinson, P M, Chen C S, Cao Q, Tian Y C, Zhu Y, Liu X J, Cao W X. 2023. Combining UAV and sentinel-2 satellite multi-spectral images to diagnose crop growth and N status in winter wheat at the county scale. Field Crop Research, 294, 108860.

Jiang Z, Huete A R, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing Environment, 112, 3833-3845.

Kendall S L, Holmes H, White C A, Clarke S M, Berry P M. 2017. Quantifying lodging-induced yield losses in oilseed rape. Field Crop Research, 211, 106-113.

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521, 436–444.

Li L C, Wang B, Feng P Y, Liu D L, He Q S, Zhang Y J, Wang Y K, Li S Y, Lu X L, Yue C, Li Y, He J Q, Feng H, Yang G J, Yu Q. 2022. Developing machine learning models with multi-source environmental data to predict wheat yield in China. Computers and Electronics in Agriculture, 194, 106790.  

Li T, Zhong X C, Jiang M, Jin X L, Zhou P, Liu S P, Sun C M, Guo W S. 2018. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252, 144-154. 

Li W J, Weiss M, Garric B, Champolivier L, Jiang J Y, Wu W B, Baret F. 2023. Mapping crop leaf area index and canopy chlorophyll content using UAV multispectral imagery: Impacts of illuminations and distribution of input variables. Remote Sensing, 15, 1539-1552.

Li W Y, Wu W X, Yu M L, Tao H Y, Yao X, Cheng T, Zhu Y, Cao W X, Tian Y C. 2023. Monitoring rice grain protein accumulation dynamics based on UAV multispectral data. Field Crops Research, 294, 108858.

Liu Y, Nie C W, Zhang Z, Wang Z X, Ming B, Xue J, Yang H Y, Xu H G, Meng L, Cui N B, Wu W B, Jin X L. 2023. Evaluating how lodging affects maize yield estimation based on UAV observations. Frontiers in Plant Science, 13, 979103.

Long M S, Wang J M, Ding G G, Sun J G, Yu P S. 2013. Transfer feature learning with joint distribution adaptation. IEEE International Conference on Computer Vision, 2013, 2200–2207. 

Lv S X, Peng L, Hu H L, Wang L. 2022. Effective machine learning model combination based on selective ensemble strategy for time series forecasting. Information Sciences, 612, 994-1023. 

Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi F B. 2020. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing Environment, 237, 111599.

Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135-141.

Patil A E, Deosarkar D B, Khatri N, Ubale A B. 2023. Comprehensive investigation of Genotype-Environment interaction effects on seed cotton yield contributing traits in Gossypium hirsutum L. using multivariate analysis and artificial neural network. Computers and Electronics in Agriculture, 211, 107966.

Paula M R A, Lucas P O, Danielle E G F, Wesley N G, Dthenifer C S, Larissa P R T, Carlos A D S J, Guilherme F C-S, Jonathan L, Fábio H R B, José M J, Paulo E T, Hemerson P. 2020. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Computers and Electronics in Agriculture, 178, 105791.

Penuelas J, Filella I, Lloret P, Munoz F, Vilajeliu M. 1995. Reflectance assessment of mite effects on apple-trees. International Journal of Remote Sensing, 16, 2727-2733.

Qi J, Kerr Y H, Moran M S, Weltz M, Huete A R, Sorooshian S, Bryant R. 2000. Leaf area index estimates using remotely sensed data and brdf models in a semiarid region. Remote Sensing Environment, 73, 18-30.

Qu H, Zheng C, Ji H, Barai K, Zhang Y J. 2024. A fast and efficient approach to estimate wild blueberry yield using machine learning with drone photography: Flight altitude, sampling method and model effects. Computers and Electronics in Agriculture, 216, 108543.

Reyniers M, Walvoort D J J, De Baardemaaker J. 2006. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 27, 4159-4179.

Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing Environment, 55, 95-107.

Roth L, Aasen H, Walter A, Liebisch F. 2018. Extracting leaf area index using viewing geometry effects-a new perspective on high-resolution unmanned aerial system photography. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 161-175.

Shah A N, Tanveer M, Rehman A U, Anjum S A, Iqbal J, Ahmad R. 2017. Lodging stress in cereal-effects and management: An overview. Environmental Science and Pollution Research, 24, 5222-5237.

Shen L, He Y, Guo X. 2013. Suitability of the normalized difference vegetation index and the adjusted transformed soil-adjusted vegetation index for spatially characterizing loggerhead shrike habitats in north american mixed prairie. Journal of Applied Remote Sensing, 7, 073574.

Sishodia R P, Ray R L, Singh S K. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12, 3136-3167.

Sun Q, Gu X H, Chen L P, Xu X B, Wei Z H, Pan Y C, Gao Y B. 2022. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Computers and Electronics in Agriculture, 193, 106671.

Tang X P, Liu H J, Feng D X, Zhang W J, Chang J, Li L, Yang L. 2022. Prediction of field winter wheat yield using fewer parameters at middle growth stage by linear regression and the bp neural network method. European Journal of Agronomy, 141, 126621.

Wan L, Zhou W L, He Y, Wanger T C, Cen H Y. 2022. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sensing Environment, 269, 112826.

Wang J D, Chen Y Q, Hao S J, Feng W J, Shen Z Q. 2017. Balanced Distribution Adaptation for Transfer Learning. 2017 IEEE International Conference on Data Mining (ICDM), 2017, 1129-1134.

Wood E M, Pidgeon A M, Radeloff V C, Keuler N S. 2012. Image texture as a remotely sensed measure of vegetation structure. Remote Sensing Environment, 121, 516-526.

Xiao G L, Zhang X Y, Niu Q D, Li X G, Li X C, Zhong L H, Huang J X. 2024. Winter wheat yield estimation at the field scale using Sentinel-2 data and deep learning. Computers and Electronics in Agriculture, 216, 108555.

Yang N, Zhang Z T, Zhang J R, Guo Y H, Yang X Z, Yu G D, Bai X Q, Chen J Y, Chen Y W, Shi L S, Li X W. 2023. Improving estimation of maize leaf area index by combining of UAV-based multispectral and thermal infrared data: The potential of new texture index. Computers and Electronics in Agriculture, 214, 108294.

Yang W B, Zhang S Q, Hou Q L, Gao J G, Wang H X, Chen X C, Liao X Z, Zhang F T, Zhao C P, Qin Z L. 2024. Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat. Journal of Integrative Agriculture, 23, 1105-1117.

Yu W G, Yang G X, Li D, Zheng H B, Yao X, Zhu Y, Cao W X, Qiu L, Cheng T. 2023. Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data. Agricultural and Forest Meteorology, 342, 109729.

Yuan W S, Meng Y, Li Y, Ji Z G, Kong Q M, Gao R, Su Z B. 2023. Research on rice leaf area index estimation based on fusion of texture and spectral information. Computers and Electronics in Agriculture, 211, 108016.

Yue J B, Yang H, Yang G J, Fu Y Y, Wang H, Zhou C Q. 2023. Estimating vertically growing crop above-ground biomass based on UAV remote sensing. Computers and Electronics in Agriculture, 205, 107627.

Zhang H J, Li T, Liu H W, Mai C Y, Yu G J, Li H L, Yu L Q, Meng L Z, Jian D W, Yang L, Li H J, Zhou Y. 2020. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964. Journal of Integrative Agriculture, 19, 138-448.

Zhang H Y, Zhang Y, Liu K D, Lan S, Gao T, Li M Z. 2023. Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms. Computers and Electronics in Agriculture, 213, 108250.

Zhang S H, He L, Duan J Z, Zang S L, Yang T C, Schulthess U R S, Guo T C, Wang C Y, Feng W. 2023. Aboveground wheat biomass estimation from a low-altitude UAV platform based on multimodal remote sensing data fusion with the introduction of terrain factors. Precision Agriculture, 25, 119-145.

Zhang S H, Qi X H, Duan J Z, Yuan X R, Zhang H Y, Feng W. 2024. Comparison of attention mechanism-based deep learning and transfer strategies for wheat yield estimation using multisource temporal drone imagery. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-23.

Zhang W X, Zhou T J, Ye W H, Zhang T Y, Zhang L X, Zhang L X, Wolski P, Risbey J, Wang Z, Min S K, Ramsay H, Brody M, Grimm A, Clark R, Ren K N, Jiang J, Chen X L, Li L, Tang S J, Hu S. 2025. A year marked by extreme precipitation and floods: wheat and climate extremes in 2024. Advances in Atmospheric Sciences, 42, 1045-1063.

Zhou L L, Nie C W, Su T, Xu X B, Song Y, Yin D M, Liu S B, Liu Y D, Bai Y, Jia X, Jin X L. 2023. Evaluating the canopy chlorophyll density of maize at the whole growth stage based on multi-scale UAV image feature fusion and machine learning methods. Agriculture-Basel, 13, 895-917.

[1] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, MIAO Hua-rong, Ye Chu, YANG Wei-qiang, ZHONG Wen, CHEN Jing. Identification of QTLs for plant height and branching related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[2] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role of GmMDH2 in salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[3] YUAN Li-fang, JIANG Hang, LIU Qi-bao, JIANG Xi-long, WEI Yan-feng, YIN Xiang-tian, LI Ting-gang. Acidic environment favors the development and pathogenicity of the grape white rot fungus Coniella vitis[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[4] YAN He, CHEN Shuang, ZHAO Jing-kun, ZHANG Zhi-bing, CHEN Lun-lun, HUANG Ren-mei, LIU Yong-min, SHI Xiao-jun, ZHANG Yu-ting. Dynamic changes in weed abundance and biodiversity following different green manure establishment[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[5] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice-wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[6] Honglu Wang, Hui Zhang, Qian Ma, Enguo Wu, Aliaksandr Ivanistau, Baili Feng. Effect of nitrogen fertilizer on proso millet starch structure, pasting, and rheological properties[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[7] Changning Wei, Hui Cao, Chenxu Li, Hongyu Song, Qing Liu, Xingquan Zhu, Wenbin Zheng. Differences in N6-methyladenosine (m6A) methylation among the three major clonal lineages of Toxoplasma gondii tachyzoites[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[8] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Investigating the impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[9] Chunjia Jin, Ziqi Liang, Xiaodong Su, Peiyue Wang, Xiaodong Chen, Yue Wang, Xinjian Lei, Junhu Yao, Shengru Wu. Low rumen degradable starch reduces diarrhea and colonic inflammation by influencing the whole gastrointestinal microbiota and metabolite flow in dairy goats[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[10] ZENG Jian-qi, ZHAO De-hui, YANG Li, YANG Yu-feng, LIU Dan, TIAN Yu-bing, WANG Feng-ju, CAO Shuang-he, XIA Xian-chun, HE Zhong-hu, ZHANG Yong. Fine mapping and candidate gene analysis of a major QTL for grain length on chromosome 5BS in bread wheat[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[11] Shanshan Qi, Haoyang Wu, Donghua Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong, Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun. Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[12] Shudong Chen, Yupan Zou, Xin Tong, Cao Xu. A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[13] Ting Pan, Ruiting Guo, Weiwei Wang, Xing Liu, Bing Xia, Linshu Jiang, Ming Liu. Mechanism of mitigating on Deoxynivalenol-induced intestinal toxicity in swine and its dietary regulation strategy[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[14] Jiazhi Sun, Bingyun Yang, Lingmin Xia, Rui Yang, Chaoyang Ding, Yang Sun, Xing Chen, Chunyan Gu, Xue Yang, Yu Chen. Amino acid substitutions in succinate dehydrogenase complex conferring resistance to the SDHI fungicide pydiflumetofen in Cochlibolus heterostrophus causing southern corn leaf blight[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
[15] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 0-.
No Suggested Reading articles found!