Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Mitigating shading-induced yield penalty of maize via improving radiation utilization

Xiaoxia Guo1, 2, Yunshan Yang1, Guangzhou Liu3, Wanmao Liu4, Bo Ming2, Ruizhi Xie2, Keru Wang2, Ling Gou1#, Peng Hou2#, Shaokun Li1, 2

1 Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, College of Agronomy, Shihezi University, Shihezi 832000, China

2 Key Laboratory of Crop Physiology and Ecology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

3 State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Water-Saving Agriculture in North China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China 

4 School of Agriculture, Ningxia University, Yinchuan 750021, China

 Highlight 

Increasing radiation utilization efficiency can mitigate the negative effects of low light stress.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

全球太阳辐射下降造成的玉米产量损失,对粮食安全构成了巨大的威胁;同时,密植也加剧了玉米对冠层中光的竞争。了解弱光环境适应性强的品种在弱光条件仍能维持较高产量的机制,有助于减轻弱光胁迫造成的产量损失。本文基于20202021新疆奇台的田间试验,系统研究不同光照水平(CK: 自然光, S: 遮光30%)和种植密度 (D1:7.5×104 plants ha-1, D2: 12×104 plants ha-1)对14个玉米品种产量及光能利用相关的影响。结果表明,Ⅰ类(对照及遮光处理产量均高)品种产量较Ⅲ类(对照及遮光处理产量均低)品种高20.8%。随着太阳辐射的下降,Ⅰ类和Ⅲ类产量分别下降23.0%29.4%。Ⅰ类品种耐弱光指数较Ⅲ类品种高37.4%。Ⅰ类品种产量高于Ⅲ类品种主要是由于其花前、花后生物量,叶面积持续时间、光合速率、光能利用率分别较Ⅲ类品种高8.3%9.1%15.3%12.7%18.2%。因此,在弱光下保持较高的光合性能、光能利用率和花后生物量的积累可以有效减少因光下降造成的产量损失。



Abstract  

The decrease in global solar radiation and population light competition due to continuously increasing planting density pose a considerable risk to maize yields.  It is imperative to understand why certain hybrids, which are well-adapted to low-light conditions, can still realize high yields despite these conditions. In this study, we investigated the effects of different light levels (CK, nature light; S, 30% of nature light) and planting densities (D1, 7.5×104 plants ha-1; D2, 12×104 plants ha-1) on the yield and radiation utilization of 14 maize hybrids, on field experiments conducted at Qitai Farm, Xinjiang in 2020 and 2021.  The results showed that when classifying all hybrids based on their average yields under both CK and S treatments, the hybrids were mainly distributed in type I (high yields under both CK and S treatments) and type III (low yields under both CK and S treatments).  The yield of type I hybrids was 20.8% higher than that of type III hybrids.  As solar radiation decreased, the yields of type I and type III hybrids decreased by 23.0 and 29.4%, respectively.  The low light tolerance index of type I hybrids was 37.4% higher than that of type III hybrids.  The higher yield of type I hybrids can be attributed to their higher pre-silking dry weight, post-silking dry weight, leaf area duration, photosynthetic rate, and radiation use efficiency, which exceeded those of type III hybrids by 8.3, 9.1, 15.3, 12.7, and 18.2%, respectively.  Therefore, our findings emphasized that maintaining high photosynthetic performance under low light conditions, improving radiation use efficiency, and increasing post-silking biomass accumulation can effectively mitigate the yield penalties caused by decreased solar radiation.

Keywords:  maize              solar radiation              shading              dense planting              yield penalty       radiation use efficiency  
Online: 27 May 2025  
Fund: 

This research was supported by the National Key R&D Program of China (2023YFD1900603 and  2023YFD2301703), the National Natural Science Foundation of China (32172118), and the Central Public-interest Scientific Institution Basal Research Fund, Central Public-interest Scientific Institution Basal Research Fund, China (Y2025YC14; CAAS-ZDRW202418)

About author:  Xiaoxia Guo, E-mail: Gguoxiaoxia@163.com; #Correspondence Peng Hou, Tel: +86-10-82108595, E-mail: houpeng@caas.cn; Ling Gou, Tel: +86-993-2057990, E-mail: gl_agr@shzu.edu.cn

Cite this article: 

Xiaoxia Guo, Yunshan Yang, Guangzhou Liu, Wanmao Liu, Bo Ming, Ruizhi Xie, Keru Wang, Ling Gou, Peng Hou, Shaokun Li. 2025. Mitigating shading-induced yield penalty of maize via improving radiation utilization. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.05.024

van Dijk M, Morley T, Rau M L, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nature Food, 2, 494-501.

Feng Y, Cui X, Shan H, Shi Z S, Li F H, Wang H W, Zhu M, Zhong X M. 2021. Effects of solar radiation on photosynthetic physiology of barren stalk differentiation in maize. Plant Science, 312, 111046.

Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. 2018. Grain development and endogenous hormones in summer maize (Zea mays L.) submitted to different light conditions. International Journal of Biometeorology, 62, 2131-2138.

Gerakis P A, Papakosta-Tasopoulou D. 1980. Effects of dense planting and artificial shading on five maize hybrids. Agricultural Meteorology, 21, 129-137.

Guo X X, Liu W M, Yang Y S, Liu G Z, Ming B, Xie R Z, Wang K R, Li S K, Hou P. 2025. Matching light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency. Journal of Integrative Agriculture, 24, 2-13.

Guo X X, Yang Y S, Liu H F, Liu G Z, Liu W M, Wang Y H, Zhao R L, Ming B, Xie R Z, Wang K R, Hou P, Xiao C H, Li S K. 2021. Effects of solar radiation on root and shoot growth of maize and the quantitative relationship between them. Crop Science, 61,1414-1425.

Hammad H M, Abbas F, Ahmad A, Fahad S, Laghari Q K, Alharby H, Farhad W. 2016. The effect of nutrients shortage on plant’s efficiency to capture solar radiations under semi-arid environments. Environmental Science and Pollution Research, 23, 20497-20505.

He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. 2020. Regional gap in maize production, climate and resource utilization in China. Field Crops Research, 254, 107830.

Hu J, Yu W Z, Liu P, Zhao B, Zhang J W, Ren B Z. 2023. Responses of canopy functionality, crop growth and grain yield of summer maize to shading, waterlogging, and their combination stress at different crop stages. European Journal of Agronomy, 144, 126761.

Ji H X, Liu G Z, Liu W M, Yang Y S, Guo X X, Zhang G Q, Tao Z Q, Li S K, Hou P. 2025. Quantitative design and production methods for sustainably increasing maize grain yield and resource use efficiency. Frontiers of Agricultural Science & Engineering, https://doi.org/10.15302/J-FASE-2025601.

Liang X G, Chen H M, Pan Y Q, Wang Z W, Huang C, Chen Z Y, Tang W, Chen X M, Shen S, Zhou S L. 2025. Yield more in the shadow: Mitigating shading-induced yield penalty of maize via optimizing source-sink carbon partitioning. European Journal of Agronomy, 162, 127421.

Liu G Z, Yang Y S, Liu W M, Guo X X, Xie R Z, Ming B, Xue J, Zhang G Q, Li R F, Wang K R, Hou P, Li S K. 2022. Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security, 11, e375.

Liu S, Xing J, Zhao B, Wang J D, Wang S X, Zhang X Y, Ding A. 2019. Understanding of aerosol-climate interactions in China: Aerosol impacts on solar radiation, temperature, cloud, and precipitation and its changes under future climate and emission scenarios. Current Pollution Reports, 5, 36-51.

Pignon C P, Jaiswal D, McGrath J M, Long S P. 2017. Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops? Journal of Experimental Botany, 68, 335-345.

Ramos-Fuentes I A, Elamri Y, Cheviron B, Dejean C, Belaud G, Fumey D. 2023. Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems. Agricultural Water Management, 280, 108187.

Ren B Z, Cui H Y, Camberato J J, Dong S T, Liu P, Zhao B, Zhang J W. 2016. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize. The Science of Nature, 103, 67.

Ren B Z, Yu W Z, Liu P, Zhao B, Zhang J W. 2023. Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. The Crop Journal, 11, 269-277.

Saenz E, Ruiz A, Sciarresi C, King K, Baum M, Ferela A, Danalatos G J N, Gambin B, Kalogeropoulos G, Thies A, Ordóñez R A, Trifunovic S, Narvel J, Eudy D M, Schnable P S, Topp C, Vyn T J, Archontoulis S V. 2025. Historical increases in plant density increased vegetative maize biomass while breeding increased reproductive biomass and allocation to ear over stem. Field Crops Research, 322, 109704.

Sales C R G, Ribeiro R V, Marchiori P E R, Kromdijk J, Machado E C. 2023. The negative impact of shade on photosynthetic efficiency in sugarcane may reflect a metabolic bottleneck. Environmental and Experimental Botany, 211, 105351.

Shi Q B, Kong F Y, Zhang H S, Jiang Y E, Heng S Q, Liang R, Ma L, Liu J S, Lu X D, Li P H, Li G. 2019. Molecular mechanisms governing shade responses in maize. Biochemical and Biophysical Research Communications, 516, 112-119.

Su Z E, Liu Z J, Bai F, Zhang Z T, Sun S, Huang Q W, Liu T, Liu X Q, Yang X G. 2021. Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China. Journal of Integrative Agriculture, 20, 371-382.

Sun Z C, Geng W J, Ren B Z, Zhao B, Liu P, Zhang J W. 2023. Responses of the photosynthetic characteristics of summer maize to shading stress. Journal of Agronomy and Crop Science, 209, 330-344.

Tian J G, Wang C L, Chen F Y, Qin W C, Yang H, Zhao S H, Xia J L, Du X, Zhu Y F, Wu L S, Gao Y, Li H, Zhuang J H, Chen S J, Zhang H Y, Chen Q Y, Zhang M C, Deng X W, Deng D Z, Li J G, et al. 2024. Maize smart-canopy architecture enhances yield at high densities. Nature, 632, 576-584.

Wu W M, Yue W, Bi J J, Zhang L, Xu D F, Peng C, Chen X, Wang S J. 2024. Influence of climatic variables on maize grain yield and its components by adjusting the sowing date. Frontiers in Plant Science, 15, 1411009.

Xiao D P, Tao F L. 2016. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009. International Journal of Biometeorology60, 1111-1122.

Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P. 2017. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Research, 212, 126-134.

Yabiku T, Ueno O. 2019. Structural and photosynthetic re-acclimation to low light in C4 maize leaves that developed under high light. Annals of Botany, 124, 437-445.

Yang Y S, Guo X X, Liu G Z, Liu W M, Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. 2021. Solar radiation effects on dry matter accumulations and transfer in maize. Frontiers in Plant Science, 12, 1927.

Zhao J F, Kong X N, Xu H, Zhang Y H, Jiang Y Q. 2020. Assessment of biomass and yield loss of maize caused by aerosols in heavily polluted agricultural areas of China based on APSIM model. Physics and Chemistry of the Earth Parts A/B/C, 115, 102835.

Zhang G X, Cui, C G, Lv Y F, Wang X Y, Wang X F, Zhao D H, Hu F S, Wen X X, Han J, Liao Y C. 2024. Is it necessary to increase the maize planting density in China. European Journal of Agronomy, 159, 127235.

[1] Shulin Zhang, Yu Wang, Jinmei Hu, Xinyue Cui, Xiaoru Kang, Wei Zhao, Yuemin Pan. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2266-2284.
[2] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[3] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[4] Tengfei Wang, Changyong Fan, Yufei Xiao, Shan Lü, Guangyang Jiang, Mengyun Zou, Yingjie Wang, Qiao Guo, Zhenghao Che, Xiuli Peng. Protection of chickens from Mycoplasma gallisepticum through the MAPK/ERK/JNK pathway by a compound of ten Chinese medicine formulas[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2356-2370.
[5] Luoyu Wu, Furong Chen, Pengwei Wang, Chongjing Xu, Weidong Wen, Matthias Hahn, Mingguo Zhou, Yiping Hou. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2285-2298.
[6] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[7] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[8] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[9] Tongming Wang, Kai Zhou, Bingxian Yang, Benoit Lefebvre, Guanghua He. OsEXO70L2 is required for large lateral root formation and arbuscular mycorrhiza establishment in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2035-2045.
[10] Guangzheng Liu, Wenjie Ren, Kai Jin, Dan Zheng, Qisheng Zuo, Yani Zhang, Guohong Chen, Bichun Li, Yingjie Niu. PGC-mediated conservation strategies for germplasm resources of Rugao Yellow chicken and Shouguang chicken in China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2327-2341.
[11] Mingmei Wu, Rui Dong, Yan Zhang, Haojie Liao, Tian Tian, Dandan Xu, Youjun Zhang, Zhaojiang Guo, Shaoli Wang.
Overexpression of TuABCC4 is associated with abamectin resistance in Tetranychus urticae Koch
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2299-2310.
[12] Jie Zhang, Qi Wang, Jinxi Yuan, Zhen Tian, Shanchun Yan, Wei Liu.
Development of a piggyBac transgenic system in Bactrocera dorsalis and its potential for research on olfactory molecular targets
[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2311-2326.
[13] Xingshuai Tian, Huitong Yu, Jiahui Cong, Yulong Yin, Kai He, Zihan Wang, Zhenling Cui. The estimation method is the primary source of uncertainty in cropland nitrate leaching estimates in China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2425-2437.
[14] Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. The circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2155-2170.
[15] Wei Yan, Jinze Zhang, Yingfen Jiang, Kunjiang Yu, Qian Wang, Xu Yang, Lijing Xiao, Entang Tian. Construction of a high-density genetic map to explore the genetic regulation of erucic acid, oleic acid, and linolenic acid contents in Brassica juncea[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2171-2189.
No Suggested Reading articles found!