Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The estimation method is the primary source of uncertainty in cropland nitrate leaching estimates in China

Xingshuai Tian*, Huitong Yu*, Jiahui Cong, Yulong Yin, Kai He, Zihan Wang, Zhenling Cui#

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

农田硝酸盐淋失是氮(N)损失的主要途径,水体污染显著具有显著。然而,由于输入数据集和估算方法的差异,农田硝酸盐淋失的估计仍存在很大的不确定性。在本研究中,我们通过整合3种农田面积数据集、3种氮入数据集和3种估算方法中国农田硝酸盐淋洗进行了重新估计识别并量化了中国农田硝酸盐淋洗估计的不确定性来源。结果表明综合27种不同组合的估计结果,2010中国农田硝酸盐淋洗平均6.7±0.6 Tg N yr−1(平均值±标准误差),范围为2.9—15.8 Tg N yr−1。估算方法是硝酸盐淋洗估计不确定性的主要来源贡献了45.1%的不确定性;其次是入数据集与估算方法之间的交互作用,贡献了24.4%的不确定性。我们的研究强调了需要采用稳健的估算方法,并改善估算方法与氮入数据集之间的匹配性,以有效减少估计过程中的不确定性。本研究发现对准确估计农田硝酸盐淋失具有重要意义,进而为解决水体污染问题提供了科学支撑。



Abstract  

Cropland nitrate leaching is the major nitrogen (N) loss pathway, and it contributes significantly to water pollution. However, cropland nitrate leaching estimates show great uncertainty due to variations in input datasets and estimation methods. Here, we presented a re-evaluation of Chinese cropland nitrate leaching, and identified and quantified the sources of uncertainty by integrating three cropland area datasets, three N input datasets, and three estimation methods. The results revealed that nitrate leaching from Chinese cropland averaged 6.7±0.6 Tg N yr−1 in 2010, ranging from 2.9 to 15.8 Tg N yr−1 across 27 different estimates. The primary contributor to the uncertainty was the estimation method, accounting for 45.1%, followed by the interaction of N input dataset and estimation method at 24.4%. The results of this study emphasize the need for adopting a robust estimation method and improving the compatibility between the estimation method and N input dataset to effectively reduce uncertainty. This analysis provides valuable insights for accurately estimating cropland nitrate leaching and contributes to ongoing efforts that address water pollution concerns.

Keywords:  cropland nitrate leaching       uncertainty              cropland area              nitrogen input              estimation method  
Online: 27 August 2024  
Fund: 
This work was supported by the National Key Research and Development Program of China (2023YFD1902703) and the National Natural Science Foundation of China (Key Program) (U23A20158).
About author:  Xingshuai Tian, E-mail: tianxingshuai@126.com; Huitong Yu, E-mail: 18745141052@163.com; #Correspondence Zhenling Cui, Tel: +86-10-62733454, E-mail: cuizl@cau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Xingshuai Tian, Huitong Yu, Jiahui Cong, Yulong Yin, Kai He, Zihan Wang, Zhenling Cui. 2024. The estimation method is the primary source of uncertainty in cropland nitrate leaching estimates in China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.08.023

Adalibieke W, Cui X, Cai H, You L, Zhou F. 2023. Global crop-specific nitrogen fertilization dataset in 1961–2020. Scientific Data, 10, 617.

Bai X, Zhang Z, Cui J, Liu Z, Chen Z, Zhou J. 2020. Strategies to mitigate nitrate leaching in vegetable production in China: A meta-analysis. Environmental Science and Pollution Research27, 18382-18391.

Breiman L. 2001. Random forests. Machine Learning45, 5-32.

Cao W D, Bao X G, Xu C X, Nie J, Gao Y J, Geng M J. 2017. Reviews and prospects on science and technology of green manure in China. Journal of Plant Nutrition and Fertilizers, 23, 1450-1461.

Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555, 363-366.

Gao S, Xu P, Zhou F, Yang H, Zheng C, Cao W, Tao S, Piao S, Zhao Y, Ji X, Shang Z, Chen M. 2016. Quantifying nitrogen leaching response to fertilizer additions in China's cropland. Environmental Pollution211, 241-251.

Gu B, Ge Y, Chang S X, Luo W, Chang J. 2013. Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 23, 1112-1121.

Huddell A M, Galford G L, Tully K L, Crowley C, Palm C A, Neill C, Hickman J E, Menge D N L. 2020. Meta‐analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Global Change Biology, 26, 1668-1680.

IPCC (Intergovernmental Panel on Climate Change). 2019. 2019 Refinement to the 2006 Intergovernmental Panel on climate change guidelines for national greenhouse gas inventories. [2022-11-22]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

van der Laan M, Annandale J G, Bristow K L, Stirzaker R J, Preez C C D, Thorburn P J. 2014. Modelling nitrogen leaching: Are we getting the right answer for the right reason? Agricultural Water Management, 133, 74-80.

Liu L, Xu W, Lu X, Zhong B, Guo Y, Lu X, Zhao Y, He W, Wang S, Zhang X, Liu X, Vitousek P. 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America119, e2121998119.

Liu L, Zhang X, Xu W, Liu X, Li Y, Wei J, Wang Z, Lu X. 2020. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environmental Pollution265, 114862.

Lu C, Tian H. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data9, 181-192.

Matsui H. 2020. Quadratic regression for functional response models. Econometrics and Statistics13, 125-136.

Mcpherson J M, Jetz W, Rogers D J. 2006. Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions—possibilities and limitations. Ecological Modelling192, 499-522.

Morim J, Hemer M, Wang X L, Cartwright N, Trenham C, Semedo A, Young I, Bricheno L, Camus P, Casas-Prat M. 2019. Robustness and uncertainties in global multivariate wind-wave climate projections. Nature Climate Change9, 711-718.

Müller M F, Penny G, Niles M T, Ricciardi V, Chiarelli D D, Davis K F, Dell Angelo J, D Odorico P, Rosa L, Rulli M C, Mueller N D. 2021. Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the National Academy of Sciences of the United States of America118, e2020535118.

NBSC (National Bureau of Statistics of China). 2011. China Statistical Yearbook 2010. China Statistics Press, Beijing. (in Chinese)

NBSC (National Bureau of Statistics of China). 2015. China Statistical Yearbook 2014. Beijing: China Statistics Press, Beijing. (in Chinese)

Nouri A, Lukas S, Singh S, Singh S, Machado S. 2022. When do cover crops reduce nitrate leaching? A global meta‐analysis. Global Change Biology, 28, 4736-4749.

Qiu J, Li H, Wang L, Tang H, Li C, Van Ranst E. 2011. GIS-model based estimation of nitrogen leaching from croplands of China. Nutrient Cycling in Agroecosystems, 90, 243-252.

Quemada M, Baranski M, Nobel-De Lange M N J, Vallejo A, Cooper J M. 2013. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agriculture, Ecosystems & Environment, 1741-1751.

Schulte-Uebbing L F, Beusen A H W, Bouwman A F, de Vries W. 2022. From planetary to regional boundaries for agricultural nitrogen pollution. Nature, 610, 507-512.

Steffen W, Richardson K, Rockstrom J, Cornell S E, Fetzer I, Bennett E M, Biggs R, Carpenter S R, de Vries W, de Wit C A, Folke C, Gerten D, Heinke J, Mace G M, Persson L M, Ramanathan V, Reyers B, Sorlin S. 2015. Planetary boundaries: Guiding human development on a changing planet. Science347, 1259855.

Tei F, De Neve S, de Haan J, Kristensen H L. 2020. Nitrogen management of vegetable crops. Agricultural Water Management240, 106316.

Tian H, Bian Z, Shi H, Qin X, Pan N, Lu C, Pan S, Tubiello F N, Chang J, Conchedda G, Liu J, Mueller N, Nishina K, Xu R, Yang J, You L, Zhang B. 2022. History of anthropogenic nitrogen inputs (HaNi) to the terrestrial biosphere: A 5 arcmin resolution annual dataset from 1860 to 2019. Earth System Science Data14, 4551-4568.

Tian X, Cong J, Wang H, Zheng H, Wang Z, Chu Y, Wang Y, Xue Y, Yin Y, Cui Z. 2023. Cropland nitrous oxide emissions exceed the emissions of RCP 2.6: A global spatial analysis. Science of the Total Environment858, 159738.

Tian X, Yin Y, Zhuang M, Cong J, Chu Y, He K, Zhang Q, Cui Z. 2022a. Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014. Scientific Data9, 233.

Tian X, Zhuang M, Yin Y, Cong J, Ying H, Wang Y, Cui Z. 2022b. Improved mapping of nitrogen loss and surplus in China's maize belt. Agronomy Journal114, 2811-2821.

Tribouillois H, Constantin J, Guillon B, Willaume M, Aubrion G, Fontaine A, Hauprich P, Kerveillant P, Laurent F, Therond O. 2020. AqYield-N: A simple model to predict nitrogen leaching from crop fields. Agricultural and Forest Meteorology284, 107890.

de Vries W, Kros J, Kroeze C, Seitzinger S P. 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability5, 392-402.

Wang B, Feng P, Liu D L, O Leary G J, Macadam I, Waters C, Asseng S, Cowie A, Jiang T, Xiao D, Ruan H, He J, Yu Q. 2020. Sources of uncertainty for wheat yield projections under future climate are site-specific. Nature Food1, 720-728.

Wang Y, Ying H, Yin Y, Zheng H, Cui Z. 2019. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Science of the Total Environment657, 96-102.

Xu R, Tian H, Pan S, Prior S A, Feng Y, Dangal S R S. 2020. Global N2O emissions from cropland driven by nitrogen addition and environmental factors: Comparison and uncertainty analysis. Global Biogeochemical Cycles34, e2020GB006698.

Ying H, Xue Y, Yan K, Wang Y, Yin Y, Liu Z, Zhang Q, Tian X, Li Z, Liu Y, Cui Z. 2020. Safeguarding food supply and groundwater safety for maize production in China. Environmental Science & Technology54, 9939-9948.

Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth N C, Hessen D O, Sun Z, Yu L, et al. 2019. Managing nitrogen to restore water quality in China. Nature, 567, 516-520.

Yu Z, Jin X, Miao L, Yang X. 2021. A historical reconstruction of cropland in China from 1900 to 2016. Earth System Science Data13, 3203-3218.

Yu Z, Liu J, Kattel G. 2022. Historical nitrogen fertilizer use in China from 1952 to 2018. Earth System Science Data14, 5179-5194.

Yu Z, Liu S, Li H, Liang J, Liu W, Piao S, Tian H, Zhou G, Lu C, You W, Sun P, Dong Y, Sitch S, Agathokleous E. 2024. Maximizing carbon sequestration potential in Chinese forests through optimal management. Nature Communications15, 3154.

Zhang H, Yang R, Guo S, Li Q. 2020. Modeling fertilization impacts on nitrate leaching and groundwater contamination with HYDRUS-1D and MT3DMS. Paddy and Water Environment18, 481-498. 

Zhang Q, Chu Y, Xue Y, Ying H, Chen X, Zhao Y, Ma W, Ma L, Zhang J, Yin Y, Cui Z. 2020. Outlook of China's agriculture transforming from smallholder operation to sustainable production. Global Food Security26, 100444.

Zhao H, Lakshmanan P, Wang X, Xiong H, Yang L, Liu B, Shi X, Chen X, Wang J, Zhang Y, Zhang F. 2022. Global reactive nitrogen loss in orchard systems: A review. Science of the Total Environment821, 153462.

Zhao X, Zhou Y, Min J, Wang S, Shi W, Xing G. 2012. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agriculture, Ecosystems & Environment, 156, 1-11. 

Zhou F, Shang Z, Ciais P, Tao S, Piao S, Raymond P, He C, Li B, Wang R, Wang X, Peng S, Zeng Z, Chen H, Ying N, Hou X, Xu P. 2014. A New high-resolution N2O emission inventory for China in 2008. Environmental Science & Technology48, 8538-8547.

Zhu T. 2020. Analysis on the applicability of the random forest. Journal of Physics (Conference Series)1607, 12123. 

No related articles found!
No Suggested Reading articles found!