Bittner S, Gayler S, Biernath C, Winkler J B, Seifert S, Pretzsch H, Priesack E. 2012. Evaluation of a ray-tracing canopy light model based on terrestrial laser scans. Canadian Journal of Remote Sensing, 38, 619–628.
Chang T G, Shi Z, Zhao H, Song Q, He Z, Van Rie J, Den Boer B, Galle A, Zhu X G. 2022. 3dCAP-Wheat: An open-source comprehensive computational framework precisely quantifies wheat foliar, nonfoliar, and canopy photosynthesis. Plant Phenomics, 2022, 28-46.
Chen H, Zhang M, Xiao S, Wang Q, Cai Z, Dong Q, Feng P, Shao K, Ma Y. 2024. Quantitative analysis and planting optimization of multi-genotype sugar beet plant types based on 3D plant architecture. Computers and Electronics in Agriculture, 225, 109231.
Chen T W, Cabrera-Bosquet L, Alvarez Prado S, Perez R, Artzet S, Pradal C, Coupel-Ledru A, Fournier C, Tardieu F. 2019. Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. Journal of Experimental Botany, 70, 2523–2534.
Ci X, Li M, Xu J, Lu Z, Bai P, Ru G, Liang X, Zhang D, Li X, Bai L, Xie C, Hao Z, Zhang S, Dong S. 2012. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 185, 395–406.
Duvick D N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 86, 83–145.
Feldman A, Wang H, Fukano Y, Kato Y, Ninomiya S, Guo W. 2021. EasyDCP: An affordable, high‐throughput tool to measure plant phenotypic traits in 3D. Methods in Ecology and Evolution, 12, 1679–1686.
Gitelson A, Viña A, Solovchenko A, Arkebauer T, Inoue Y. 2019. Derivation of canopy light absorption coefficient from reflectance spectra. Remote Sensing of Environment, 231, 111276.
Gou L, Xue J, Qi B, Ma B, Zhang W. 2017. Morphological variation of maize cultivars in response to elevated plant densities. Agronomy Journal, 109, 1443–1453.
Gu S, Wen W, Xu T, Lu X, Yu Z, Guo X, Zhao C. 2022. Use of 3D modeling to refine predictions of canopy light utilization: A comparative study on canopy photosynthesis models with different dimensions. Frontiers in Plant Science, 13, 735981.
Hui F, Zhu J, Hu P, Meng L, Zhu B, Guo Y, Li B, Ma Y. 2018. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations. Annals of Botany, 121, 1079–1088.
Klodt M, Cremers D. 2015. High-resolution plant shape measurements from multi-view stereo reconstruction. In: Agapito L, Bronstein M M, Rother C, eds., Computer Vision-ECCV 2014 Workshops. Lecture Notes in Computer Science, Springer International Publishing, Cham. pp. 174–184.
Li D H. 2000. Retrospect and prospect in breeding of compact corn. Crops, 5, 1–5. (in Chinese)
Li R, Hu D, Ren H, Yang Q, Dong S, Zhang J, Zhao B, Liu P. 2022. How delaying post-silking senescence in lower leaves of maize plants increases carbon and nitrogen accumulation and grain yield. The Crop Journal, 10, 853–863.
Li R, Zhang G, Liu G, Wang K, Xie R, Hou P, Ming B, Wang Z, Li S. 2021. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food and Energy Security, 10, e312.
Li Y, Liu J, Zhang B, Wang Y, Yao J, Zhang X, Fan B, Li X, Hai Y, Fan X. 2022. Three-dimensional reconstruction and phenotype measurement of maize seedlings based on multi-view image sequences. Frontiers in Plant Science, 13, 974339.
Liu G, Hou P, Xie R, Ming B, Wang K, Xu W, Liu W, Yang Y, Li S. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1. Field Crops Research, 213, 221–230.
Liu G, Liu W, Hou P, Ming B, Yang Y, Guo X, Xie R, Wang K, Li S. 2021. Reducing maize yield gap by matching plant density and solar radiation. Journal of Integrative Agriculture, 20, 363–370.
Liu Y, Jafari F, Wang H. 2021. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. aBIOTECH, 2, 131–145.
Ma D, Xie R, Yu X, Li S, Gao J. 2022. Historical trends in maize morphology from the 1950s to the 2010s in China. Journal of Integrative Agriculture, 21, 2159–2167.
Maddonni G A, Chelle M, Drouet J L, Andrieu B. 2001. Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: Simulations and crop measurements. Field Crops Research, 70, 1–13.
Markham M Y, Stoltenberg D E. 2010. Corn morphology, mass, and grain yield as affected by early-season red: Far-red light environments. Crop Science, 50, 273–280.
Postma J A, Hecht V L, Hikosaka K, Nord E A, Pons T L, Poorter H. 2021. Dividing the pie: A quantitative review on plant density responses. Plant, Cell & Environment, 44, 1072–1094.
Pound M P, French A P, Murchie E H, Pridmore T P. 2014. Automated recovery of three-dimensional models of plant shoots from multiple color images. Plant Physiology, 166, 1688–1698.
Van Roekel R J, Coulter J A. 2011. Agronomic responses of corn to planting date and plant density. Agronomy Journal, 103, 1414–1422.
Shi Q, Xia Y, Wang Q, Lv K, Yang H, Cui L, Sun Y, Wang X, Tao Q, Song X, Xu D, Xu W, Wang X, Wang X, Kong F, Zhang H, Li B, Li P, Wang H, Li G. 2024. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize. Molecular Plant, 17, 1255–1271.
Song Q, Liu F, Bu H, Zhu X G. 2023. Quantifying contributions of different factors to canopy photosynthesis in 2 maize varieties: Development of a novel 3D canopy modeling pipeline. Plant Phenomics, 5, 0075.
Taube F, Vogeler I, Kluß C, Herrmann A, Hasler M, Rath J, Loges R, Malisch C S. 2020. Yield progress in forage maize in NW Europe—Breeding progress or climate change effects? Frontiers in Plant Science, 11, 1214.
Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365, 658–664.
Vazin F, Hassanzadeh M, Madani A, Nassiri-Mahallati M, Nasri M. 2010. Modeling light interception and distribution in mixed canopy of common cocklebur (Xanthium stramarium L.) in competition with corn. Planta Daninha, 28, 455–462.
Wang B, Lin Z, Li X, Zhao Y, Zhao B, Wu G, Ma X, Wang H, Xie Y, Li Q, Song G, Kong D, Zheng Z, Wei H, Shen R, Wu H, Chen C, Meng Z, Wang T, Li Y, et al. 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 52, 565–571.
Welcker C, Spencer N A, Turc O, Granato I, Chapuis R, Madur D, Beauchene K, Gouesnard B, Draye X, Palaffre C, Lorgeou J, Melkior S, Guillaume C, Presterl T, Murigneux A, Wisser R J, Millet E J, Van Eeuwijk F, Charcosset A, Tardieu F. 2022. Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions. Nature Communications, 13, 3225.
Wen W, Guo X, Li B, Wang C, Wang Y, Yu Z, Wu S, Fan J, Gu S, Lu X. 2019. Estimating canopy gap fraction and diffuse light interception in 3D maize canopy using hierarchical hemispheres. Agricultural and Forest Meteorology, 276–277, 107594.
Wen W, Wang Y, Wu S, Liu K, Gu S, Guo X. 2021. 3D phytomer-based geometric modelling method for plants—the case of maize. AoB Plants, 13, plab055.
Wu S, Wen W, Wang Y, Fan J, Wang C, Gou W, Guo X. 2020. MVS-Pheno: A portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction. Plant Phenomics, 2020, 1848437.
Wu S, Zhang Y, Zhao Y, Wen W, Wang C, Lu X, Guo M, Guo X, Zhao J, Zhao C. 2024. Using high-throughput phenotyping platform MVS-Pheno to decipher the genetic architecture of plant spatial geometric 3D phenotypes for maize. Computers and Electronics in Agriculture, 225, 109259.
Wu Y, Wen W, Gu S, Huang G, Wang C, Lu X, Xiao P, Guo X, Huang L. 2024. Three-dimensional modeling of maize canopies based on computational intelligence. Plant Phenomics, 6, 0160.
Xiang L, Bao Y, Tang L, Ortiz D, Salas-Fernandez M G. 2019. Automated morphological traits extraction for sorghum plants via 3D point cloud data analysis. Computers and Electronics in Agriculture, 162, 951–961.
Xiao S, Chai H, Shao K, Shen M, Wang Q, Wang R, Sui Y, Ma Y. 2020. Image-based dynamic quantification of aboveground structure of sugar beet in field. Remote Sensing, 12, 269.
Xiao S, Fei S, Li Q, Zhang B, Chen H, Xu D, Cai Z, Bi K, Guo Y, Li B, Chen Z, Ma Y. 2023. The importance of using realistic 3D canopy models to calculate light interception in the field. Plant Phenomics, 5, 0082.
Xue H, Han Y, Li Y, Wang G, Feng L, Fan Z, Du W, Beifang Yang, Cao C, Mao S. 2015. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Research, 184, 17–27.
Xue J, Xie R, Zhang W, Wang K, Hou P, Ming B, Gou L, Li S. 2017. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 16, 2717–2725.
Yan Y, Duan F, Li X, Zhao R, Hou P, Zhao M, Li S, Wang Y, Dai T, Zhou W. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, 2652–2667.
Yang D, Yang H, Liu D, Wang X. 2024. Research on automatic 3D reconstruction of plant phenotype based on Multi-View images. Computers and Electronics in Agriculture, 220, 108866.
Zheng B, Shi L, Ma Y, Deng Q, Li B, Guo Y. 2008. Comparison of architecture among different cultivars of hybrid rice using a spatial light model based on 3-D digitising. Functional Plant Biology, 35, 900.
Zhou Y, Kusmec A, Schnable P S. 2024. Genetic regulation of self-organizing azimuthal canopy orientations and their impacts on light interception in maize. The Plant Cell, 36, 1600–1621.
Zhu B, Liu F, Xie Z, Guo Y, Li B, Ma Y. 2020. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season. Annals of Botany, 126, 701–712.
|