Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4395-4414    DOI: 10.1016/j.jia.2025.02.049
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Mapping soil organic carbon in fragmented agricultural landscapes: The efficacy and interpretability of multi-category remote sensing variables

Yujiao Wei1, Yiyun Chen1, 2#, Jiaxue Wang1, Peiheng Yu3, Lu Xu4, Chi Zhang1, Huanfeng Shen1, Yaolin Liu1, 2, 5, Ganlin Zhang6, 7, 8

1 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China

2 Key Laboratory of Digital Cartography and Land Information Application Engineering, Ministry of Natural Resources, Wuhan 430079, China

3 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4 School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China

5 Duke Kunshan University, Kunshan 215316, China

6 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

7 University of Chinese Academy of Sciences, Beijing 100049, China

8 Key Laboratory of Watershed Geographic Science, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

 Highlights 
Multi-category remote sensing variables can improve our understanding of soil organic carbon (SOC) variation in fragmented agricultural landscapes.
Spectral transformations significantly contribute to SOC prediction.
Interpretable machine learning excels in prediction accuracy and revealing how landscape variables influence SOC.
There are nonlinear and threshold effects between environmental variables and SOC.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

土壤有机碳 (SOC) 的准确空间分布对于指导农业管理和改善土壤碳封存至关重要,尤其是在破碎的农业景观中。虽然遥感提供了关于异质农业景观的空间连续环境信息,但其与 SOC 的关系仍不清楚。在本研究中,我们假设多类别遥感衍生变量可以增强我们对复杂景观条件下 SOC 变化的理解。以中国云南杞麓湖流域为案例区,基于从灌区采集的 216 个表层土壤样本,我们应用极端梯度提升 (XGBoost) 模型来研究植被指数 (VI)、亮度指数 (BI)、水分指数 (MI) 和光谱变换(ST主成分分析和缨帽变换)对 SOC 制图的贡献。结果表明,STSOC预测精度的贡献最大,其次是MIVIBIR2分别提高了29.2726.8319.5114.43%,这归因于ST包含更丰富的遥感光谱信息。最优SOC预测模型综合了土壤性质、地形因素、区位因素、景观格局指数以及遥感变量,RMSEMAE分别为15.0511.42 g kg-1R2CCC分别为0.570.72Shapley加性解释分别解释了土壤水分、植被状态、土壤亮度和SOC之间存在的非线性和阈值效应。与传统线性回归模型相比,可解释机器学习在预测精度和揭示反映景观特征的变量对SOC的影响方面具有优势。总体而言,我们的研究不仅揭示了遥感衍生变量如何有助于了解破碎农业景观中的 SOC 分布,而且还阐明了它们的功效。通过可解释的机器学习,我们进一步阐明了 SOC 变化的原因,这对于可持续土壤管理和农业实践具有重要意义。



Abstract  

Accurately mapping the spatial distribution of soil organic carbon (SOC) is crucial for guiding agricultural management and improving soil carbon sequestration, especially in fragmented agricultural landscapes.  Although remote sensing provides spatially continuous environmental information about heterogeneous agricultural landscapes, its relationship with SOC remains unclear.  In this study, we hypothesized that multi-category remote sensing-derived variables can enhance our understanding of SOC variation within complex landscape conditions.  Taking the Qilu Lake watershed in Yunnan, China, as a case study area and based on 216 topsoil samples collected from irrigation areas, we applied the extreme gradient boosting (XGBoost) model to investigate the contributions of vegetation indices (VI), brightness indices (BI), moisture indices (MI), and spectral transformations (ST, principal component analysis and tasseled cap transformation) to SOC mapping.  The results showed that ST contributed the most to SOC prediction accuracy, followed by MI, VI, and BI, with improvements in R2 of 29.27, 26.83, 19.51, and 14.43%, respectively.  The dominance of ST can be attributed to the fact that it contains richer remote sensing spectral information.  The optimal SOC prediction model integrated soil properties, topographic factors, location factors, and landscape metrics, as well as remote sensing-derived variables, and achieved RMSE and MAE of 15.05 and 11.42 g kg–1, and R2 and CCC of 0.57 and 0.72, respectively.  The Shapley additive explanations deciphered the nonlinear and threshold effects that exist between soil moisture, vegetation status, soil brightness and SOC.  Compared with traditional linear regression models, interpretable machine learning has advantages in prediction accuracy and revealing the influences of variables that reflect landscape characteristics on SOC.  Overall, this study not only reveals how remote sensing-derived variables contribute to our understanding of SOC distribution in fragmented agricultural landscapes but also clarifies their efficacy.  Through interpretable machine learning, we can further elucidate the causes of SOC variation, which is important for sustainable soil management and agricultural practices.

Keywords:  soil organic carbon       remote sensing-derived variables        Shapley additive explanations        efficacy and interpretability        fragmented agricultural landscapes  
Received: 13 November 2041   Accepted: 20 January 2025 Online: 25 February 2025  
Fund: This study was supported by the National Key Research and Development Program of China (2022YFB3903302).
About author:  Yujiao Wei, E-mail: weiyujiao@whu.edu.cn; #Correspondence Yiyun Chen, E-mail: chenyy@whu.edu.cn

Cite this article: 

Yujiao Wei, Yiyun Chen, Jiaxue Wang, Peiheng Yu, Lu Xu, Chi Zhang, Huanfeng Shen, Yaolin Liu, Ganlin Zhang. 2025. Mapping soil organic carbon in fragmented agricultural landscapes: The efficacy and interpretability of multi-category remote sensing variables. Journal of Integrative Agriculture, 24(11): 4395-4414.

Bagheri N. 2020. Application of aerial remote sensing technology for detection of fire blight infected pear trees. Computers and Electronics in Agriculture168, 105147.

Bao N S, Liu S J, Yang T H, Cao Y. 2021. Characterization and prediction of soil organic matter content in reclaimed mine soil using visible and near-infrared diffuse spectroscopy. Arid Land Research and Management35, 276–291.

Bao Y L, Ustin S, Meng X T, Zhang X L, Liu H J. 2021. A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features. Geoderma403, 115263.

Chen F Z, Feng P Y, Harrison M T, Wang B, Liu K, Zhang C X, Hu K L. 2023. Cropland carbon stocks driven by soil characteristics, rainfall and elevation. Science of the Total Environment862, 160602.

Chen L F, He Z B, Zhu X, Du J, Yang J J, Li J. 2016. Impacts of afforestation on plant diversity, soil properties, and soil organic carbon storage in a semi-arid grassland of northwestern China. Catena147, 300–307.

Chen S C, Arrouays D, Leatitia Mulder V, Poggio L, Minasny B, Roudier P, Libohova Z, Lagacherie P, Shi Z, Hannam J, Meersmans J, Richer-de-Forges A C, Walter C. 2022. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma409, 115567.

Chen S C, Saby N P A, Martin M P, Barthès B G, Gomez C, Shi Z, Arrouays D. 2023. Integrating additional spectroscopically inferred soil data improves the accuracy of digital soil mapping. Geoderma433, 116467.

Chen T Q, Guestrin C. 2016. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, San Francisco, California, USA. pp. 758–794.

Chen W H, Liu L Y, Zhang C, Wang J H, Pan Y C. 2004. Monitoring the seasonal bare soil areas in Beijing using multi-temporal TM images. International Geoscience and Remote Sensing Symposium5, 3379–3382.

Deng Y B, Wu C S, Li M, Chen R R. 2015. RNDSI: A ratio normalized difference soil index for remote sensing of urban/suburban environments. International Journal of Applied Earth Observation and Geoinformation39, 40–48.

Dong W, Wu T J, Luo J C, Sun Y W, Xia L G. 2019. Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China. Geoderma340, 234–248.

Escadafal R. 1989. Remote sensing of arid soil surface color with Landsat thematic mapper. Advances in Space Research9, 159–163.

Geng J, Tan Q Y, Lv J W, Fang H J. 2024. Assessing spatial variations in soil organic carbon and C:N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil and Tillage Research235, 105897.

Gilbertson J K, van Niekerk A. 2017. Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning. Computers and Electronics in Agriculture142, 50–58.

Gomes L C, Faria R M, de Souza E, Veloso, G V, Schaefer, C E G R, Filho E I F. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma340, 337–350.

Guo B, Yang X C, Yang M L, Sun D M, Zhu W S, Zhu D Y, Wang J L. 2023. Mapping soil salinity using a combination of vegetation index time series and single-temporal remote sensing images in the Yellow River Delta, China. Catena231, 107313.

Hamzehpour N, Shafizadeh-Moghadam H, Valavi R. 2019. Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture. Catena182, 104141.

He Q S, Yan M, Zheng L Z, Wang B. 2023. Spatial stratified heterogeneity and driving mechanism of urban development level in China under different urban growth patterns with optimal parameter-based geographic detector model mining. ComputersEnvironment and Urban Systems105, 102023.

He X L, Yang L, Li A Q, Zhang L, Shen F Y, Cai Y Y, Zhou C H. 2021. Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena205, 105442.

Hong Y S, Chen Y Y, Chen S C, Shen R L, Guo L, Liu Y L, Mouazen A M, Shi Z. 2023. Improving spectral estimation of soil inorganic carbon in urban and suburban areas by coupling continuous wavelet transform with geographical stratification. Geoderma430, 116284.

Hounkpatin O K L, Op de Hipt F, Bossa A Y, Welp G, Amelung W. 2018. Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso). Catena166, 298–309.

Huang C, Wylie B, Yang L, Homer C, Zylstra G. 2002. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing23, 1741–1748.

Huang H L, Yang L, Zhang L, Pu Y, Yang C C H, Wu Q, Cai Y Y, Shen F X, Zhou C H. 2022. A review on digital mapping of soil carbon in cropland: Progress, challenge, and prospect. Environmental Research Letters17, 123004.

Huang Y Y, Song X D, Wang Y P, Canadell J G, Luo Y Q, Ciais P, Chen A P, Hong S B, Wang Y G, Tao F, Li W, Xu Y M, Mirzaeitalarposhti R, Elbasiouny H, Savin I, Shchepashchenko D, Rossel R A V, Goll D S, Chang J F, Houlton B Z, et al. 2024. Size, distribution, and vulnerability of the global soil inorganic carbon. Science384, 233–239.

Jiang H, Rusuli Y, Amuti T, He Q. 2019. Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network. International Journal of Remote Sensing40, 284–306.

Jiang N J, Dou C Y, Tang Y W, Galdies C, Yan L, Ding H F. 2024. Derivation of tasseled cap transformation coefficients for SDGSAT-1 Multispectral Imager at-sensor reflectance data. International Journal of Digital Earth17, 2413885.

Jin X L, Song K S, Du J, Liu H J, Wen Z D. 2017. Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration. Agricultural and Forest Meteorology244–245, 57–71.

Joshi P P, Wynne R H, Thomas V A. 2019. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8. International Journal of Applied Earth Observation and Geoinformation82, 101898.

Kauth R J, Thomas G S. 1976. The Tasselled cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia159, 41–51.

Kheir R B, Greve M H, Bøcher P K, Greve M B, Larsen R, McCloy K. 2010. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. Journal of Environmental Management91, 1150–1160.

Kunkel V R, Wells T, Hancock G R. 2022. Modelling soil organic carbon using vegetation indices across large catchments in eastern Australia. Science of the Total Environment817, 152690.

Leal J, Avila E A, Darghan A E, Lobo D. 2023. Spatial modeling of infiltration and its relationship with surface coverage of rock fragments and porosity in soils of an andean micro-watershed in Tolima (Colombia). Geoderma Regional33, e00637.

Li C X, Wang G S, Han Q S, Sun J S, Ning H F, Feng D. 2023. Soil moisture and water-nitrogen synergy dominate the change of soil carbon stock in farmland. Agricultural Water Management287, 108424.

Lin L I. 1989. A concordance correlation-coefficient to evaluate reproducibility. Biometrics45, 255–268.

Liu F, Rossiter D G, Zhang G L, Li D C. 2020. A soil colour map of China. Geoderma379, 114556.

Liu H Q, Huete A. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing33, 457–465.

Liu X C, Li S Y, Wang S, Bian Z X, Zhou W, Wang C Q. 2022. Effects of farmland landscape pattern on spatial distribution of soil organic carbon in Lower Liaohe Plain of northeastern China. Ecological Indicators145, 109652.

Liu Y L, Guo L, Jiang Q H, Zhang H T, Chen Y Y. 2015. Comparing geospatial techniques to predict SOC stocks. Soil and Tillage Research148, 46–58.

Lundberg S, Lee S I. 2017. A unified approach to interpreting model predictions. In: Proceedings of the 31st Conference on Neural Information Processing Systems. Curran Associates Inc., Long Beach, California, USA. pp. 4768–4777.

Ma Y X, Minasny B, Malone B P, McBratney A B. 2019. Pedology and digital soil mapping (DSM). European Journal of Soil Science70, 216–235.

McBratney A B, Mendonça Santos M L, Minasny B. 2003. On digital soil mapping. Geoderma117, 3–52.

Meng X T, Bao Y L, Luo C, Zhang X L, Liu H J. 2024. SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model. Remote Sensing of Environment300, 113911.

Minasny B, McBratney A B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma264, 301–311.

Mirchooli F, Kiani-Harchegani M, Darvishan A K, Falahatkar S, Sadeghi S H. 2020. Spatial distribution dependency of soil organic carbon content to important environmental variables. Ecological Indicators116, 106473.

Naspendra Z, Aprisal A, Hijri N, Harianti M, Junaidi. 2021. Digital mapping and soil carbon stock distribution on various landuse of tropical peatland in Pesisir Selatan, West Sumatra. IOP Conference Series (Earth Environmental Science), 741, 012024.

Nguyen T T, Pham T D, Nguyen C T, Delfos J, Archibald R, Dang K B, Hoang N B, Guo W, Ngo H H. 2022. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Science of the Total Environment804, 150187.

Ntihinyurwa P D, de Vries W T, Chigbu U E, Dukwiyimpuhwe P A. 2019. The positive impacts of farm land fragmentation in Rwanda. Land Use Policy81, 565–581.

Peng Y, Xiong X, Adhikari K, Knadel M, Grunwald S, Greve M H. 2015. Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra. PLoS ONE10, e0142295.

Poggio L, de Sousa L M, Batjes N H, Heuvelink G B M, Kempen B, Ribeiro E, Rossiter D. 2021. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil7, 217–240.

Pouladi N, Gholizadeh A, Khosravi V, Borůvka L. 2023. Digital mapping of soil organic carbon using remote sensing data: A systematic review. Catena232, 107409.

Qin F L, Guo C P, Chen H, Liu D J, Tian Y T, Xie X Q, li X W, Wang S H. 2020. The multi-phase tempo-spatial distribution and variation of soil organic matter in the Qiluhu basin. Acta Pedologica Sinica57, 1548–1555. (in Chinese)

Ren Z B, Li C J, Fu B J, Wang S, Stringer L C. 2024. Effects of aridification on soil total carbon pools in China’s drylands. Global Change Biology30, e17091.

Robin G, Jean-Michel P, Christine T M. 2010. Variable selection using random forests. Pattern Recognition Letters31, 2225–2236.

Rouse J W, Haas R H, Deering D, Schell J, Harlan J C. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Greenbelt, NASA/GSFC Type III, Final Report.

Smith P, Adams J, Beerling D J, Beringer T, Calvin K V, Fuss S, Griscom B, Hagemann N, Kammann C, Kraxner F, Minx J C, Popp A, Renforth P, Vicente Vicente J L, Keesstra S. 2019. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annual Review of Environment and Resources44, 255–286.

Sokol N W, Bradford M A. 2019. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience12, 46–53.

Song X D, Wu H Y, Ju B, Liu F, Zhang G L. 2020. Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma363, 114145.

Stockmann U, Adams M A, Crawford J W, Field D J, Henakaarchchi N, Jenkins M, Minasny B, McBratney A B, de Rémy de Courcelles V, Singh K, Wheeler I, Abbott L, Angers D A, Baldock J, Bird M, Brookes P C, Chenu C, Jastrow J D, Lal R, Lehmann J, et al. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. AgricultureEcosystems & Environment164, 80–99.

Sun X L, Minasny B, Wang H L, Zhao Y G, Zhang G L, Wu Y J. 2021. Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE. Geoderma384, 114808.

Tang Z Y, Zeng Z W, Wu S L, Fu D B, He J H, Cai Y H, Chen Y, Gong H, Qi L. 2024. Optimizing soil resistance and disturbance of bionic furrow opener for paddy field based on badger claw using the CFD-DEM method. Computers and Electronics in Agriculture227, 109549.

Tarnocai C, Canadell J G, Schuur E A G, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles23, GB2023.

Vaudour E, Gilliot J M, Bel L, Lefevre J, Chehdi K. 2016. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. International Journal of Applied Earth Observation and Geoinformation49, 24–38.

Venancio L P, Mantovani E C, Amaral C, Neale C M U, Goncalves I Z, Filgueiras R, Campos I. 2019. Forecasting corn yield at the farm level in Brazil based on the FAO–66 approach and soil-adjusted vegetation index (SAVI). Agricultural Water Management225, 105779.

Wadoux A M J C, Minasny B, McBratney A B. 2020. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews210, 103359.

Wadoux A M J C, Molnar C. 2022. Beyond prediction: Methods for interpreting complex models of soil variation. Geoderma422, 115953.

Wang J X, Chen Y Y, Wu Z H, Wei Y J, Zhang Z Y, Wang X M, Huang J Y, Shi Z. 2024. On the effectiveness of multi-scale landscape metrics in soil organic carbon mapping. Geoderma449, 117026.

Wang L Y, Hu P, Zheng H W, Liu Y, Cao X W, Hellwich O, Liu T, Luo G P, Bao A M, Chen X. 2023. Integrative modeling of heterogeneous soil salinity using sparse ground samples and remote sensing images. Geoderma430, 116321.

Wang T, Xiao C X, Liu J, Lü X. 2020. Dynamic evolution and landscape ecological risks assessment of Qilu Lake in Yunnan Plateau. Journal of Zhejiang A&F University37, 9–17. (in Chinese)

Wei Y J, Chen Y Y, Wang J X, Wang B, Yu P H, Hong Y S, Zhu L D. 2024. Unveiling the explanatory power of environmental variables in soil organic carbon mapping: A global-local analysis framework. Geoderma449, 117011.

Wu Z H, Liu Y L, Han Y R, Zhou J N, Liu J M, Wu J A. 2021. Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data. Science of the Total Environment754, 142120.

Wu Z H, Wang B Z, Huang J L, An Z H, Liu Y F. 2019. Estimating soil organic carbon density in plains using landscape metric-based regression Kriging model. Soil Tillage Research195, 104381.

Xiao G L, Zhang X Y, Niu Q D, Li X G, Li X C, Zhong L H, Huang J X. 2024. Winter wheat yield estimation at the field scale using Sentinel-2 data and deep learning. Computers and Electronics in Agriculture216, 108555.

Yang C C H, Yang L, Zhang L, Zhou C H. 2023. Soil organic matter mapping using INLA-SPDE with remote sensing based soil moisture indices and Fourier transforms decomposed variables. Geoderma437, 116571.

Yang R M, Liu L A, Zhang X, He R X, Zhu C M, Zhang Z Q, Li J G. 2022. The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes. Geoderma405, 115407.

Yu P H, Fennell S, Chen Y Y, Liu H, Xu L, Pan J W, Bai Y, Gu S X. 2022. Positive impacts of farmland fragmentation on agricultural production efficiency in Qilu Lake watershed: Implications for appropriate scale management. Land Use Policy117, 106108.

Yue J B, Tian J, Tian Q J, Xu K J, Xu N X. 2019. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands. ISPRS Journal of Photogrammetry and Remote Sensing154, 216–230.

Zhai Y G, Roy D P, Martins V S, Zhang H K, Yan L, Li Z B. 2022. Conterminous United States Landsat-8 top of atmosphere and surface reflectance tasseled cap transformation coefficients. Remote Sensing of Environment274, 112992.

Zhang C, Chen Y Y, Wei Y J, Yu P H, Hong Y S, Hu Y Z, Wang J X, Shi Z. 2024. Unraveling the threshold and interaction effects of environmental variables on soil organic carbon mapping in plateau watershed. Geoderma450, 117032.

Zhang G L, Liu F, Song X D. 2017. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture16, 2871–2885.

Zhang J G, Lan Z L, Li H W, Jaffar M T, Li X, Cui L L, Han J L. 2023. Coupling effects of soil organic carbon and moisture under different land use types, seasons and slope positions in the Loess Plateau. Catena233, 107520.

Zhang S Y, Chen Y Y, Zhang Z Y, Wang S Y, Wu Z H, Hong Y S, Wang Y, Hou H B, Hu Z Z, Fei T. 2022. VNIR estimation of heavy metals concentrations in suburban soil with multi-scale geographically weighted regression. Catena219, 106585.

Zhang X L, Chen S C, Xue J, Wang N, Xiao Y, Chen Q Q, Hong Y S, Zhou Y, Teng H F, Hu B F, Zhuo Z Q, Ji W J, Huang Y F, Gou Y X, Richer-de-Forges A C, Arrouays D, Shi Z. 2023. Improving model parsimony and accuracy by modified greedy feature selection in digital soil mapping. Geoderma432, 116383.

Zhang X L, Xue J, Chen S C, Zhuo Z Q, Wang Z, Chen X Y, Xiao Y, Shi Z. 2024. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data. Journal of Integrative Agriculture23, 2820–2841.

Zhang Y C S, Guo L, Chen Y Y, Shi T Z, Wang S Q. 2019. Prediction of soil organic carbon based on landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sensing11, 1683.

Zhao D M, Wang J Z, Miao J, Zhen J N, Wang J J, Gao C J, Jiang J C, Wu G F. 2022. Spectral features of Fe and organic carbon in estimating low and moderate concentration of heavy metals in mangrove sediments across different regions and habitat types. Geoderma426, 116093.

Zheng S Q, Zhang J M, Chi F Q, Zhou B K, Wei D, Kuang E J, Jiang Y, Mi G, Chen Y P. 2021. Response of the chemical structure of soil organic carbon to modes of maize straw return. Scientific Reports11, 6574.

Zhou Y, Chen S C, Zhu A X, Hu B F, Shi Z, Li Y. 2021. Revealing the scale- and location-specific controlling factors of soil organic carbon in Tibet. Geoderma382, 114713.

Zhou Y, Webster R, Viscarra-Rossel R A, Shi Z, Chen S. 2019. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s. Geoderma334, 124–133.

[1] Yulu Chen, Li Huang, Jusheng Gao, Zhen Zhou, Muhammad Mehran, Mingjian Geng, Yangbo He, Huimin Zhang, Jing Huang. Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2371-2388.
[2] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
[3] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[4] Lijun Ren, Han Yang, Jin Li, Nan Zhang, Yanyu Han, Hongtao Zou, Yulong Zhang. Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(1): 306-321.
[5] Jialin Yang, Liangqi Ren, Nanhai Zhang, Enke Liu, Shikun Sun, Xiaolong Ren, Zhikuan Jia, Ting Wei, Peng Zhang.

Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region? [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1541-1556.

[6] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[7] SUN Tao, TONG Wen-jie, CHANG Nai-jie, DENG Ai-xing, LIN Zhong-long, FENG Xing-bing, LI Jun-ying, SONG Zhen-wei. Estimation of soil organic carbon stock and its controlling factors in cropland of Yunnan Province, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1475-1487.
[8] ZHANG Wen-zhao, CHEN Xiao-qin, WANG Huo-yan, WEI Wen-xue, ZHOU Jian-min. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China[J]. >Journal of Integrative Agriculture, 2022, 21(2): 521-531.
[9] LI Teng-teng, ZHANG Jiang-zhou, ZHANG Hong-yan, Chrisite PHRISITE, ZHANG Jun-ling. Fractionation of soil organic carbon in a calcareous soil after long-term tillage and straw residue management[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3611-3625.
[10] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
[11] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[12] CHEN Xu, HAN Xiao-zeng, YOU Meng-yang, YAN Jun, LU Xin-chun, William R. Horwath, ZOU Wen-xiu . Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2605-2618.
[13] WANG Shi-chao, ZHAO Ya-wen, WANG Jin-zhou, ZHU Ping, CUI Xian, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai . The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland[J]. >Journal of Integrative Agriculture, 2018, 17(2): 436-448.
[14] LIN Er-da, GUO Li-ping, JU Hui. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 723-725.
[15] LIU Hai-long, LIU Hong-bin,LEI Qiu-liang, ZHAI Li-mei, WANG Hong-yuan, ZHANG Ji-zong, ZHU Yeping, LIU Sheng-ping, LI Shi-juan, ZHANG Jing-suo, LIU Xiao-xia. Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2300-2307.
No Suggested Reading articles found!