Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3703-3718    DOI: 10.1016/j.jia.2025.02.010
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Abscisic acid reduces Cd accumulation by regulating Cd transport and cell wall sequestration in rice

Zhijun Xu1, 2*, Jiashi Peng3*, Yanlei Fu4*, Jing Zhao2, 5, Yan Peng1, Bohan Liu1, Xujun Hu4, Yuchuan Liu4, Meijuan Duan1, 6, Nenghui Ye1#, Zhenxie Yi1#, Shuan Meng1, 2#

1 Hunan Provincial Key Laboratory of Rice Stress Biology/College of Agronomy, Hunan Agricultural University, Changsha 410128, China

2 Yuelushan Laboratory, Changsha 410128, China

3 Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China

4 OE Biotech Co., Ltd., Shanghai 201112, China

5 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China

6 Hunan Women’s University, Changsha 410004, China 

 Highlights 

Numerous abscisic acid (ABA)-related genes are responsive to cadmium (Cd) stress in rice plants.
ABA reduces Cd accumulation by suppressing Cd uptake and regulating cell wall sequestration.
Foliar spraying of ABA during the grain-filling stage reduces Cd accumulation in rice grains.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

镉影响水稻生长其随食物链迁移进入人体严重威胁人类的健康,因此,研究水稻对镉的响应和调控过程显得尤为重要。本研究通过转录组分析发现大量脱落酸相关的基因响应镉胁迫,后续通过施加外源脱落酸可以显著降低水稻地上部和根部的镉含量。不仅如此外源脱落酸可能通过提高抗坏血酸过氧化物酶活性以及降低过氧化氢水平缓解镉对水稻的毒害。后续研究表明,脱落酸可以通过调水稻对的转运和细胞壁的阻隔作用,减少水稻植株的镉积累。进一步的,脱落酸信号因子OsABI5突变可导致水稻地上部镉含量提高。此外,在水稻灌浆期叶面喷施脱落酸显著降低水稻籽粒的镉积累,并主要通过降低水稻对镉的吸收抑制镉从根部向地上部转运以及抑制镉从叶片向籽粒的转运实现。本研究不仅揭示了脱落酸在调节水稻镉胁迫响应的潜在机制,为应对农田镉污染提供了参考。



Abstract  

Cadmium (Cd) uptake by rice plants and its subsequent movement through food chains pose a notable risk to the health of both plants and humans.  Therefore, understanding the fundamental mechanisms underlying the uptake and movement process is essential.  Through transcriptome analysis, we found that numerous abscisic acid (ABA)-related genes responded to Cd stress.  Exogenous application of ABA significantly reduced Cd accumulation in the shoots and roots of rice plants.  The increased ascorbate peroxidase (APX) enzyme activity, decreased H2O2 content, and elevated Cd tolerance index collectively suggest that ABA may mitigate the toxicity of Cd in rice plants.  Further study revealed that exogenous ABA reduced Cd accumulation by regulating Cd transport and cell wall sequestration.  Consistently, mutation of the ABA signaling factor OsABI5 resulted in a significant increase in Cd accumulation in shoots.  Moreover, foliar spraying of ABA during the grain-filling stage significantly reduced Cd accumulation in rice grains, which was attributed mainly to decreased Cd uptake and the inhibition of Cd transportation from roots to shoots and from leaves to grains.  These findings elucidate the underlying mechanisms of the ABA-mediated response to Cd stress in rice and provide a practical reference for coping with Cd pollution in farmlands

Keywords:  rice       Cd accumulation        Cd toxicity        abscisic acid        cell wall  
Received: 26 November 2024   Online: 10 February 2025   Accepted: 26 December 2024
Fund: 

The authors acknowledge support from the National Natural Science Foundation of China (U20A2024) and the National Key Research and Development Program of China (2023YFD2301300).

About author:  Zhijun Xu, E-mail: 1136035895@qq.com; #Correspondence Shuan Meng, E-mail: mengs@hunau.edu.cn; Zhenxie Yi, E-mail: yizhenxie@126.com; Nenghui Ye, E-mail: laonengye@gmail.com * These authors contributed equally to this study.

Cite this article: 

Zhijun Xu, Jiashi Peng, Yanlei Fu, Jing Zhao, Yan Peng, Bohan Liu, Xujun Hu, Yuchuan Liu, Meijuan Duan, Nenghui Ye, Zhenxie Yi, Shuan Meng. 2025. Abscisic acid reduces Cd accumulation by regulating Cd transport and cell wall sequestration in rice. Journal of Integrative Agriculture, 24(10): 3703-3718.

Bali S, Jamwal V L, Kohli S K, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi S G, Bhardwaj R, Al-Huqail A A, Siddiqui M H, Ali H M, Ahmad P. 2019. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere235, 734–748.

Bezrukova M V, Fatkhutdinova R A, Lubyanova A R, Murzabaev A R, Fedyaev V V, Shakirova F M. 2011. Lectin involvement in the development of wheat tolerance to cadmium toxicity. Russian Journal of Plant Physiology58, 1048–1054.

Chang J D, Huang S, Yamaji N, Zhang W, Ma J F, Zhao F J. 2020. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell and Environment43, 2476–2491.

Chen J, Wu X, Song J, Xing G, Liang L, Yin Q, Guo A, Cui J. 2021. Transcriptomic and physiological comparsion of the short-term responses of two Oryza sativa L. varieties to cadmium. Environmental and Experimental Botany181, 104292.

Chu C, Huang R, Liu L, Tang G, Xiao J, Yoo H, Yuan M. 2022. The rice heavy-metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. Plant Cell and Environment45, 1109–1126.

Fan S K, Fang X Z, Guan M Y, Ye Y Q, Lin X Y, Du S T, Jin C W. 2014. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science5, 721.

Guerriero G, Sergeant K, Hausman J F. 2014. Wood biosynthesis and typologies: A molecular rhapsody. Tree Physiology34, 839–855.

Gumińska N, Plecha M, Walkiewicz H, Halakuc P, Zakrys B, Milanowski R. 2018. Culture purification and DNA extraction procedures suitable for next-generation sequencing of euglenids. Journal of Applied Phycology30, 3541–3549.

Han Y, Wang S, Zhao N, Deng S, Zhao C, Li N, Sun J, Zhao R, Yi H, Shen X, Chen S. 2016. Exogenous abscisic acid alleviates cadmium toxicity by restricting Cd2+ influx in Populus euphratica cells. Journal of Plant Growth Regulation35, 827–837.

He L, Li J. 2022. Integrated transcriptome and physiological analysis of rice seedlings reveals different cadmium response mechanisms between indica and japonica varieties. Environmental and Experimental Botany204, 105097.

He X L, Fan S K, Zhu J, Guan M Y, Liu X X, Zhang Y S, Jin C W. 2017. Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant and Soil416, 453–462.

Hsu Y T, Kao C H. 2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell and Environment26, 867–874.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. 2005. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant Journal44, 939–949.

Kuang L, Yan T, Gao F, Tang W, Wu D. 2024. Multi-omics analysis reveals differential molecular responses to cadmium toxicity in rice root tip and mature zone. Journal of Hazardous Materials462, 132758.

Kulsum P G P S, Khanam R, Das S, Nayak A K, Tack F M G, Meers E, Vithanage M, Shahid M, Kumar A, Chakraborty S, Bhattacharya T, Biswas J K. 2023. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environmental Research220, 115098.

Leng Y, Li Y, Ma Y H, He L F, Li S W. 2021. Abscisic acid modulates differential physiological and biochemical responses of roots, stems, and leaves in mung bean seedlings to cadmium stress. Environmental Science and Pollution Research28, 6030–6043.

Li B, Wang S, You X, Wen Z, Huang G, Huang C, Li Q, Chen K, Zhao Y, Gu M, Li X, Wei Y, Qin Y. 2023. Effect of foliar spraying of gibberellins and brassinolide on cadmium accumulation in rice. Toxics11, 364.

Li Y, Qi X. 2023. Tryptophan pretreatment adjusts transcriptome and metabolome profiles to alleviate cadmium toxicity in ArabidopsisJournal of Hazardous Materials452, 131226.

Li Y, Zhang S, Bao Q, Chu Y, Sun H, Huang Y. 2022. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environmental Pollution304, 119178.

Lin J H, Xu Z J, Peng J S, Zhao J, Zhang G B, Xie J, Yi Z X, Zhang J H, Gong J M, Ye N H, Meng S. 2019. OsProT1 and OsProT3 function to mediate proline- and γ-aminobutyric acid-specific transport in yeast and are differentially expressed in rice (Oryza sativa L.). Rice12, 79.

Lin Z, Li Y, Wang Y, Liu X, Ma L, Zhang Z, Mu C, Zhang Y, Peng L, Xie S, Song C P, Shi H, Zhu J K, Wang P. 2021. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications12, 2456.

Liu Y S, Tao Y, Yang X Z, Liu Y N, Shen R F, Zhu X F. 2022. Gibberellic acid alleviates cadmium toxicity in rice by regulating NO accumulation and cell wall fixation capacity of cadmium. Journal of Hazardous Materials439, 129597.

Lu C, Zhang L, Tang Z, Huang X Y, Ma J F, Zhao F J. 2019. Producing cadmium-free indica rice by overexpressing OsHMA3. Environment International126, 619–626.

Lu G, Gao C, Zheng X, Han B. 2009. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta229, 605–615.

Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. 2018. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications9, 645.

Luo Q, Bai B, Xie Y, Yao D, Zhang D, Chen Z, Zhuang W, Deng Q, Xiao Y, Wu J. 2022. Effects of Cd uptake, translocation and redistribution in different hybrid rice varieties on grain Cd concentration. Ecotoxicology and Environmental Safety240, 113683.

Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. 2011. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist189, 190–199.

Muhammad S, Ulhassan Z, Munir R, Yasin MU, Islam F, Zhang K, Chen W, Jan M, Afzal M, Muhammad A, Hannan F, Zhou W. 2024. Nanosilica and salicylic acid synergistically regulate cadmium toxicity in rice. Environmental Pollution364, 125331.

Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition52, 464–469.

Pan J, Guan M, Xu P, Chen M, Cao Z. 2021. Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling. Science of the Total Environment797, 149202.

Pan W, You Y, Shentu J L, Weng Y N, Wang S T, Xu Q R, Liu H J, Du S T. 2020. Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in ArabidopsisJournal of Hazardous Materials391, 122189.

Panda P, Nath S, Chanu T T, Sharma G D, Panda S K. 2011. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiologiae Plantarum33, 1737–1747.

Parrotta L, Guerriero G, Sergeant K, Cal G, Hausman J F. 2015. Target or barrier? The cell wall of early- and later-diverging plants vs. cadmium toxicity: Differences in the response mechanisms. Frontiers in Plant Science6, 133.

Peng J S, Wang Y J, Ding G, Ma H L, Zhang Y J, Gong J M. 2017. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Molecular Plant10, 771–774.

Sasaki A, Yamaji N, Ma J F. 2014. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany65, 6013–6021.

Sasaki A, Yamaji N, Yokosho K, Ma J F. 2012. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell24, 2155–2167.

Skubacz A, Daszkowska-Golec A, Szarejko I. 2016. The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Frontiers in Plant Science7, 1884.

Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. 2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 62, 4843–4850.

Tang L, Dong J, Qu M, Lv Q, Zhang L, Peng C, Hu Y, Li Y, Ji Z, Mao B, Peng Y, Shao Y, Zhao B. 2022. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms. Science of the Total Environment832, 155006.

Tao J, Lu L. 2022. Advances in genes-encoding transporters for cadmium uptake, translocation, and accumulation in plants. Toxics10, 411.

Tian S, Liang S, Qiao K, Wang F, Zhang Y, Chai T. 2019. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Journal of Hazardous Materials380, 120853.

Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. 2010. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 107, 16500–16505.

Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America108, 20959–20964.

Wang F, Tan H, Huang L, Cai C, Ding Y, Bao H, Chen Z, Zhu C. 2021. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicology and Environmental Safety207, 111198.

Wang Y, Wu F, Lin Q, Sheng P, Wu Z, Jin X, Chen W, Li S, Luo S, Duan E, Wang J, Ma W, Ren Y, Cheng Z, Zhang X, Lei C, Guo X, Wang H, Zhu S, Wan J. 2023. A regulatory loop establishes the link between the circadian clock and abscisic acid signaling in rice. Plant Physiology191, 1857–1870.

Wu H, Tong J, Jiang X, Wang J, Zhang H, Luo Y, Pang J, Shi J. 2024. More effective than direct contact: Nano hydroxyapatite pre-treatment regulates the growth and Cd uptake of rice (Oryza sativa L.) seedlings. Journal of Hazardous Materials463, 132889.

Yan H, Zhang H, Hao S, Wang L, Xu W, Mi M, Luo Y, He Z. 2023. Cadmium contamination in food crops: Risk assessment and control in smart age. Critical Reviews in Environmental Science and Technology53, 1643–1661.

Yang Y, Xiong J, Chen R, Fu G, Chen T, Tao L. 2016. Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environmental and Experimental Botany122, 141–149.

You Y, Wang Y, Zhang S, Sun X, Liu H, Guo E Y, Du S. 2022. Different pathways for exogenous ABA-mediated down-regulation of cadmium accumulation in plants under different iron supplies. Journal of Hazardous Materials440, 129769.

Yu E, Wang W, Yamaji N, Fukuoka S, Che J, Ueno D, Ando T, Deng F, Hori K, Yano M, Shen R F, Ma J F. 2022. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. Nature Food3, 597–607.

Yu X, Yang L, Fan C, Hu J, Zheng Y, Wang Z, Liu Y, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Pan Y, Li X, Gao S, Zhou Y. 2023. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatusEcotoxicology and Environmental Safety261, 115101.

Zhang Y, Wang R, Luo T, Fu J, Yin M, Wang M, Zhao Y. 2025. CRISPR-mediated editing of BnaNRAMP1 homologous copies creates a low Cd-accumulation oilseed rape germplasm with unaffected yield. Journal of Integrative Agriculture24, 1704–1717.

Zhao F Y, Wang K, Zhang S Y, Ren J, Liu T, Wang X. 2014. Crosstalk between ABA, auxin, MAPK signaling, and the cell cycle in cadmium-stressed rice seedlings. Acta Physiologiae Plantarum36, 1879–1892.

Zhao J Y, Lu H M, Qin S T, Pan P, Tang S D, Chen L H, Wang X L, Tang F Y, Tan Z L, Wen R H, He B. 2023. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice. Journal of Integrative Agriculture22, 2521–2535.

Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology171, 2810–2825.

Zou M, Guan Y, Ren H, Zhang F, Chen F. 2008. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology66, 675–683.

Zou M, Zhou S, Zhou Y, Jia Z, Guo T, Wang J. 2021. Cadmium pollution of soil–rice ecosystems in rice cultivation dominated regions in China: A review. Environmental Pollution280, 116965.

[1] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[2] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[3] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[4] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3004-3023.
[5] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2540-2557.
[6] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[7] Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S. M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood. Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2525-2539.
[8] Shulin Zhang, Yu Wang, Jinmei Hu, Xinyue Cui, Xiaoru Kang, Wei Zhao, Yuemin Pan. The N-mannosyltransferase MoAlg9 plays important roles in the development and pathogenicity of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2266-2284.
[9] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[10] Tongming Wang, Kai Zhou, Bingxian Yang, Benoit Lefebvre, Guanghua He. OsEXO70L2 is required for large lateral root formation and arbuscular mycorrhiza establishment in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2035-2045.
[11] Fangman Li, Junshen Lin, John Kojo Ahiakpa, Wenxian Gai, Jinbao Tao, Pingfei Ge, Xingyu Zhang, Yizhuo Mu, Jie Ye, Yuyang Zhang. ZF protein C2H2-71 regulates the soluble solids content in tomato by inhibiting LIN5[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2190-2202.
[12] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[13] Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1588-1605.
[14] Yuanhao Liu, Ting Sun, Yuyong Li, Jianqiang Huang, Xianjun Wang, Huimin Bai, Jiayi Hu, Zifan Zhang, Shuai Wang, Dongmei Zhang, Xiuxiu Li, Zonghua Wang, Huakun Zheng, Guifang Lin. Proteomic analysis revealed the function of PoElp3 in development, pathogenicity, and autophagy through the tRNA-mediated translation efficiency in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1515-1528.
[15] Rui Tang, Qinglin Tian, Shuang Liu, Yurui Gong, Qingmao Li, Rui Chen, Linglin Wang, Fengyi Hu, Liyu Huang, Shiwen Qin. Endophytic bacteria in different tissue compartments of African wild rice (Oryza longistaminata) promote perennial rice growth[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1001-1016.
No Suggested Reading articles found!