Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1448-1460    DOI: 10.1016/j.jia.2024.12.011
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic diversity of the self-incompatibility locus in diploid potato

Xinyu Jing1, 2, Duoduo Qian2, 3, Xiuhan Jiang2, Pei Wang2, Huihui Bao4, Dianjue Li4, Yanhui Zhu2, Guangtao Zhu4, Chunzhi Zhang2#

1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China

2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture/Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs/Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

3 State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China

4 Yunnan Key Laboratory of Potato Biology, The AGISCAAS–YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650000, China

 Highlights 

A total of 21 S-RNase alleles were identified from 194 diploid potatoes through transcriptome sequencing.

The S-RNase proteins showed a high genetic diversity with amino acid similarity ranging from 31.3 to 95.8%.

Twelve candidate SLF genes were identified within the S2 haplotype.

The S-RNase genes and SLF genes have followed a different evolutionary trajectory in potato.


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

配子体型自交不亲和(Gametophytic self-incompatibleGSI)是茄科植物普遍存在的一种自交不亲和性,它由一个核糖核酸酶(S-RNase)和多个F-boxSLF)组成的S位点控制;然而,二倍体马铃薯的S位点遗传多样性尚不清楚。本研究对194份二倍体马铃薯花柱转录组进行无参拼接,结果共鉴定到21S-RNase等位基因型,其中7S-RNase等位基因是首次被鉴定,分别是S15S16S17S18S19S20S21。等位基因频率结果显示,S2等位基因型在整个群体中基因频率最高,达到11.89%。随后,分析纯合S2自交系的基因组拼接数据显示S2位点包含12SLF基因。对4个纯合S位点共线性分析发现8SLF相对保守。KaKs计算结果显示不同S-RNase和同种单倍型内一簇SLF受到同种进化轨迹,但不同单倍型的同类SLF受到不同的进化轨迹。以上研究不仅对二倍体马铃薯种质S-RNase等位基因型进行了深入研究,而且对自交不亲和S位点组成和进化进行了分析,为二倍体马铃薯杂交育种提供了理论基础。



Abstract  
Re-domestication of diploid potato (Solanum tuberosum) into a seed crop is an innovative breeding method to accelerate genetic improvement.  Seed propagation would allow hybrid production and mix superior alleles.  However, almost all diploid potatoes in nature are self-incompatible (SI).  Gametophytic self-incompatible (GSI) is a widespread SI in Solanaceae and is controlled by the S locus that contains a ribonuclease (S-RNase) and multiple F-box (SLFs); however, the genetic diversity of the S locus in potato is unclear.  This study identified 21 S-RNase alleles involved in SI from 194 diploid potato accessions by large-scale transcriptome sequencing.  The levels of amino acid similarity among different S-RNase proteins varied from 31.3 to 95.8%.  S2 allele is the most widespread in 194 diploid potatoes and is mainly distributed in the Stuberosum Group Phureja.  Based on genomic annotation and expression analysis, we identified 12 potential functional SI male-determinant genes, S-locus F-box (SLFs), encoding F-box proteins in the S2 locus on a genomic region of approximately 13 Mb.  Comparative genomics analysis showed that eight SLF genes are relatively conserved among four homozygous S locus.  The Ka and Ks analysis suggested that S-RNase and intra-haplotypic SLF genes have co-evolved.  These findings help select suitable pollinators, combine more hybrid combinations, and fully use heterosis to accelerate diploid potato breeding.


Keywords:  potato       self-incompatibility        S-RNase        SLF  
Received: 07 December 2023   Accepted: 20 March 2024
Fund: 
This study was supported by the National Natural Science Foundation of China (32372695 and 32488302), the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202404).
About author:  Xinyu Jing, E-mail: jingxinyu@webmail.hzau.edu.cn; #Correspondence Chunzhi Zhang, E-mail: zhangchunzhi01@caas.cn

Cite this article: 

Xinyu Jing, Duoduo Qian, Xiuhan Jiang, Pei Wang, Huihui Bao, Dianjue Li, Yanhui Zhu, Guangtao Zhu, Chunzhi Zhang. 2025. Genetic diversity of the self-incompatibility locus in diploid potato. Journal of Integrative Agriculture, 24(4): 1448-1460.

Dzidzienyo D K, Bryan G J, Wilde G, Robbins T P. 2016. Allelic diversity of S-RNase alleles in diploid potato species. Theoretical and Applied Genetics129, 1985–2001.

Eggers E, van der Burgt A, van Heusden S A W, de Vries M E, Visser R G F, Bachem C W B, Lindhout P. 2021. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Nature Communications12, 4141.

De Franceschi P, Pierantoni L, Dondini L, Grandi M, Sansavini S, Sanzol J. 2011. Evaluation of candidate F-box genes for the pollen S of gametophytic self-incompatibility in the Pyrinae (Rosaceae) on the basis of their phylogenomic context. Tree Genetics & Genomes7, 663–683.

Franceschi P D, Bianco L, Cestaro A, Dondini L, Velasco R. 2018. Characterization of 25 full-length S-RNase alleles, including flanking regions, from a pool of resequenced apple cultivars. Plant Molecular Biology97, 279–296.

Frankel R, Galum E. 1977. Pollination mechanisms, reproduction and plant breeding. Experimental Agriculture14, 95.

Franklin-Tong N V E, Franklin F C H. 2003. Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends in Plant Science8, 598–605.

Fujii S, Kubo K, Takayama S. 2016. Non-self and self-recognition models in plant self-incompatibility. Nature Plants2, 16130.

Goubet P M, Berges H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl A C, Fobis-Loisy I, Vekemans X, Castric V. 2012. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in ArabidopsisPLoS Genetics8, e1002495.

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F D, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2011. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology29, 644–652.

He M, Li L, Xu Y, Mu J, Xie Z, Gu C, Zhang S. 2022. Identification of S-genotypes and a novel S-RNase in 84 native Chinese pear accessions. Horticultural Plant Journal8, 713–726.

Hiscock S J, Mcinnis S M. 2003a. The diversity of self-incompatibility systems in flowering plants. Plant Biology5, 23–32.

Hiscock S J, Mcinnis S M. 2003b. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends in Plant Science8, 606–613.

Huang J, Zhao L, Yang Q, Xue Y. 2006. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. The Plant Journal46, 780–793.

Igic B, Lande R, Kohn J R. 2008. Loss of self-incompatibility and its evolutionary consequences. International Journal of Plant Sciences169, 93–104.

Ioerger T R, Gohlke J R, Xu B, Kao T H. 1991. Primary structural features of the self-incompatibility protein in Solanaceae. Sexual Plant Reproduction4, 81–87.

Jansky S H, Charkowski A O, Douches D S, Gusmini G, Richael C, Bethke P C, Spooner D M, Novy R G, De Jong H, De Jong W S, Bamberg J B, Thompson A L, Bizimungu B, Holm D G, Brown C R, Haynes K G, Sathuvalli V R, Veilleux R E, Miller J C, Bradeen J M, et al. 2016. Reinventing potato as a diploid inbred line-based crop. Crop Science56, 1412–1422.

Kao T, Tsukamoto T. 2004. The molecular and genetic bases of S-RNase-based self-incompatibility. The Plant Cell16, 72–83.

Kardile H B, Patil V U, Sharma N K, Vanishree G, Singh D, Bhardwaj V. 2022. Expression dynamics of S locus genes defining self-incompatibility in tetraploid potato (Solanum tuberosum L.) Cv. Kufri Girdhari. Plant Physiology Reports27, 180–185.

Kubo K, Entani T, Takara A, Wang N, Fields A M, Hua Z, Toyoda M, Kawashima S, Ando T, Isogai A, Kao T, Takayama S. 2010. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science330, 796–799.

Kubo K, Paape T, Hatakeyama M, Entani T, Takara A, Kajihara K, Tsukahara M, Shimizu-Inatsugi R, Shimizu K K, Takayama S. 2015. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in PetuniaNature Plants1, 14005.

Kubo K, Tsukahara M, Fujii S, Murase K, Wada Y, Entani T, Iwano M, Takayama S. 2016. Cullin1-P is an essential component of non-self recognition system in self-incompatibility in PetuniaPlant Cell Physiology57, 2403–2416.

Lee S, Enciso-Rodriguez F E, Behling W, Jayakody T, Panicucci K, Zarka D, Nadakuduti S S, Buell C R, Manrique-Carpintero N C, Douches D S. 2023. HT-B and S-RNase CRISPR-Cas9 double knockouts show enhanced self-fertility in diploid Solanum tuberosumFrontiers in Plant Science14, 1151347.

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323.

Liang M, Cao Z, Zhu A, Liu Y, Tao M, Yang H, Xu Q, Wang S, Liu J, Li Y, Chen C, Xie Z, Deng C, Ye J, Guo W, Xu Q, Xia R, Larkin R M, Deng X, Bosch M, et al. 2020. Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nature Plants6, 131–142.

Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L. 2017. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Molecular Genetics and Genomics292, 325–341.

Lindhout P, Meijer D, Schotte T, Hutten R C B, Visser R G F, van Eck H J. 2011. Towards F1 hybrid seed potato breeding. Potato Research54, 301–312.

Ma L, Zhang C, Zhang B, Tang F, Li F, Liao Q, Tang D, Peng Z, Jia Y, Gao M, Guo H, Zhang J, Luo X, Yang H, Gao D, Lucas W J, Li C, Huang S, Shang Y. 2021. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nature Communications12, 4142.

Matton D P, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M. 1997. Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. The Plant Cell9, 1757–1766.

Mcclure B. 2004. S-RNase and SLF determine S-haplotype-specific pollen recognition and rejection. The Plant Cell16, 2840–2847.

Mcclure B A, Gray J E, Anderson M A, Clarke A E. 1990. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature347, 757–760.

Mcclure B A, Haring V, Ebert P R, Anderson M A, Simpson R J, Sakiyama F, Clarke A E. 1989. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature342, 955–957.

Mccubbin A G, Kao T H. 2000. Molecular recognition and response in pollen and pistil interactions. Annual Review Cell and Developmental Biology16, 333–364.

Murfett J, Atherton T L, Mou B, Gassert C S, Mcclure B A. 1994. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature367, 563–566.

de Nettancourt D. 1997. Incompatibility in angiosperms. Sexual Plant Reproduction10, 185–199.

de Nettancourt D. 2001. Incompatibility and Incongruity in Wild and Cultivated Plants. Springer, Berlin.

Ordoñez B, Santayana M, Aponte M, Henry I M, Comai L, Eyzaguirre R, Lindqvist-Kreuze H, Bonierbale M. 2021. PL-4 (CIP596131.4): An improved potato haploid inducer. American Journal of Potato Research98, 255–262.

Pandey K K. 1962. Incompatibility in some Solanum crosses. Genetica33, 1–23.

Paz M M, Veilleux R E. 1999. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breeding118, 53–57.

Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature475, 189–195.

Qiao H, Wang F, Zhao L, Zhou J, Lai Z, Zhang Y, Robbins T P, Xue Y. 2004. The F-Box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. The Plant Cell16, 2307–2322.

Roldán J A, Quiroga R, Goldraij A. 2010. Molecular and genetic characterization of novel S-RNases from a natural population of Nicotiana alataPlant Cell Reports29, 735–746.

Sijacic P, Wang X, Skirpan A L, Wang Y, Dowd P E, Mccubbin A G, Huang S, Kao T. 2004. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature429, 302–305.

Silva N F, Goring D R. 2001. Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences58, 1988–2007.

Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review80, 283–383.

Steinbachs J E, Holsinger K E. 2002. S-RNase-mediated gametophytic self-incompatibility is ancestral in eudicots. Molecular Biology and Evolution19, 825–829.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution30, 2725–2729.

Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X, Li D, Zhu G, Wang H, Zhou Y, Zhou Y, Bryan G J, Buell C R, Zhang C, Huang S. 2022. Genome evolution and diversity of wild and cultivated potatoes. Nature606, 535–541.

Vieira J, Ferreira P G, Aguiar B, Fonseca N A, Vieira C P. 2010. Evolutionary patterns at the RNase based gametophytic self-incompatibility system in two divergent Rosaceae groups (Maloideae and Prunus). BMC Evolutionary Biology10, 200.

Vieira J, Morales-Hojas R, Santos R A M, Vieira C P. 2007. Different positively selected sites at the gametophytic self-incompatibility pistil S-RNase gene in the Solanaceae and Rosaceae (PrunusPyrus, and Malus). Journal of Molecular Evolution65, 175–185.

Wang S, Kakui H, Kikuchi S, Koba T, Sassa H. 2012a. Interhaplotypic heterogeneity and heterochromatic features may contribute to recombination suppression at the S locus in apple (Malus×domestica). Journal of Experimental Botany63, 695–709.

Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. 2012b. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research40, e49.

Williams J S, Der J P, Depamphilis C W, Kao T. 2014. Transcriptome analysis reveals the same 17 S-Locus F-Box genes in two haplotypes of the self-incompatibility locus of Petunia inflataThe Plant Cell26, 2873–2888.

Wu L, Williams J S, Sun L, Kao T H. 2020. Sequence analysis of the Petunia inflata S-locus region containing 17 S-Locus F-Box genes and the S-RNase gene involved in self-incompatibility. The Plant Journal104, 1348–1368.

Yang Q, Fu Y, Wang Y, Liu L, Li X, Peng S. 2018. Identification of 21 novel S-RNase alleles and determination of S-genotypes in 66 loquat (Eriobotrya) accessions. Molecular Breeding38, 61–74.

Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S. 2018. Generation of self-compatible diploid potato by knockout of S-RNaseNature Plants4, 651–654.

Zhang C, Wang P, Tang D, Yang Z, Lu F, Qi J, Tawari N R, Shang Y, Li C, Huang S. 2019. The genetic basis of inbreeding depression in potato. Nature Genetics51, 374–378.

Zhang C, Yang Z, Tang D, Zhu Y, Wang P, Li D, Zhu G, Xiong X, Shang Y, Li C, Huang S. 2021. Genome design of hybrid potato. Cell184, 3873–3883.

Zhang J, Yin J, Luo J, Tang D, Zhu X, Wang J, Liu Z, Wang P, Zhong Y, Liu C, Li C, Chen S, Huang S. 2022. Construction of homozygous diploid potato through maternal haploid induction. aBIOTECH3, 163–168.

Zhu S, Zhang Y E, Copsy L, Han Q, Zheng D, Coen E, Xue Y. 2023. The snapdragon genomes reveal the evolutionary dynamics of the S-Locus supergene. Molecular Biology and Evolution40, msad080.

[1] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[2] Zhao Liu, Yuan Gao, Kun Wang, Jianrong Feng, Simiao Sun, Xiang Lu, Lin Wang, Wen Tian, Guangyi Wang, Zichen Li, Qingshan Li, Lianwen Li, Dajiang Wang.

Identification of S-RNase genotype and analysis of its origin and evolutionary patterns in Malus plants [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1205-1221.

[3] Wenqing Tan, Xinbo Guo, Zhangying Wang, Rong Zhang, Chaochen Tang, Bingzhi Jiang, Ruixue Jia, Yuanyuan Deng, Shaohai Yang, Jingyi Chen.

Metabolic profiles and morphological characteristics of leaf tips among different sweet potato (Ipomoea batatas Lam.) varieties [J]. >Journal of Integrative Agriculture, 2024, 23(2): 494-510.

[4] XIAO Yang-yang, QIAN Jia-jia, HOU Xing-liang, ZENG Lan-ting, LIU Xu, MEI Guo-guo, LIAO Yin-yin.

Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1782-1796.

[5] AI Ju, WANG Ye, YAN Ya-wen, LI Chen-xiao, LUO Wei, MA Ling, SHANG Yi, GAO Dong-li. StOFP20 regulates tuber shape and interacts with TONNEAU1 Recruiting Motif proteins in potato[J]. >Journal of Integrative Agriculture, 2023, 22(3): 752-761.
[6] LIU Cheng, ZHAO Ning, JIANG Zhi-cheng, ZHANG Huan, ZHAI Hong, HE Shao-zhen, GAO Shao-pei, LIU Qing-chang. Analysis of genetic diversity and population structure in sweetpotato using SSR markers[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3408-3415.
[7] LI Rui-jie, ZHAI Hong, HE Shao-zhen, ZHANG Huan, ZHAO Ning, LIU Qing-chang. A geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid contents in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2538-2546.
[8] ZHU Yu, YUAN Yu-han, MEI Li-ping, DING Shuang-kun, GAO Yu-chen, DU Xian-feng, GUO Li. Comparison of structural and physicochemical properties of potato protein and potato flour modified with tyrosinase[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1513-1524.
[9] DONG Suo-meng, ZHOU Shao-qun. Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3456-3466.
[10] LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang. Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2865-2875.
[11] CHEN Li-li, WANG Hao-ying, GONG Xiao-chen, ZENG Zhao-hai, XUE Xu-zhang, HU Yue-gao. Transcriptome analysis reveals effects of red and blue lightemitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormones of potato (Solanum tuberosum L.) plantlets cultured in vitro[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2914-2931.
[12] WU Jia-yu, ZHANG Yu, ZHOU Xue-ping, QIAN Ya-juan. Three sensitive and reliable serological assays for detection of potato virus A in potato plants[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2966-2975.
[13] YIN Jian, CHENG Li, HONG Yan, LI Zhao-feng, LI Cai-ming, BAN Xiao-feng, GU Zheng-biao . Use of two-stage dough mixing process in improving water distribution of dough and qualities of bread made from wheat–potato flour[J]. >Journal of Integrative Agriculture, 2021, 20(1): 300-310.
[14] LIU Min-min, LI Ya-lun, LI Guang-cun, DONG Tian-tian, LIU Shi-yang, LIU Pei, WANG Qing-guo. Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2239-2246.
[15] WANG Yi-fan, LIAO Yu-qiu, WANG Ya-peng, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Genome-wide identification and expression analysis of StPP2C gene family in response to multiple stresses in potato (Solanum tuberosum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1609-1624.
No Suggested Reading articles found!