Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1246-1258    DOI: 10.1016/j.jia.2024.09.023
Section 1: Livestock production systems Advanced Online Publication | Current Issue | Archive | Adv Search |
Gas production characteristics of oats and tritical silages and techniques for reducing gas emissions

Jing Tian, Rong Tian, Juanyan Wu, Liying Huang, Jianguo Zhang#

South Pratacultural Center, South China Agricultural University, Guangzhou 510642, China

 Highlights 
Gas production of oats and tritical silages reaches to the peak within the first 9 d.
Adding LP or corn meal reduces cumulative gas volume and mitigates CH4, CO2 and N2O emissions.
Gas production is positively correlated with the relative abundance of Lactococcus and Enterobacter.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

青贮过程中的温室气体(GHG)产生不仅会导致青贮饲料的营养损失,还会促进气候变暖。然而,关于青贮过程中温室气体的产生减少排放的策略信息较少,尤其是氧化氮(N2O)。因此,本研究选用华南地区冬闲田种植牧草和饲料作物中产气较多的燕麦(Avena sativa)和小黑麦(Triticum × Secale实验材料,通过不添加(对照)、添加植物乳杆菌(Lactiplantibacillus plantarumLP)或3%玉米粉(CM)青贮56天,分析青贮过程中量、温室气体浓度、发酵品质和细菌多样性探讨青贮过程中的产气特性减少气体排放的技术。结果表明燕麦和小黑麦的气量在青贮前9天迅速增加并达到峰值,小黑麦青贮饲料的最高气体量是燕麦的两倍。在青贮28天内,小黑麦青贮饲料产生的二氧化碳(CO2)浓度低于燕麦青贮饲料,甲烷(CH4)和N2O浓度高于燕麦青贮饲料。添加LPCM显著提高了2种饲料作物的青贮发酵品质,减少了气并在56青贮结束时降低了温室气体浓度(小黑麦的CH4除外)。在青贮初期,与产气相关的肠杆菌属Enterobacter、乳球菌属Lactococcus和明串珠菌属Leuconostoc)细菌较多,添加LP增加了乳杆菌属Lactobacillus的相对丰度,降低了与气体量CO2N2O浓度呈正相关的科萨克氏菌属Kosakonia、泛菌属Pantoea、肠杆菌属和乳球菌属等细菌的相对丰度。这些结果表明,青贮过程中的气体产生主要发生在前9天,添加LPCM可以显著提高青贮饲料的发酵品质,减少青贮过程中气体和温室气体的产生。该研究成果将有利于减少青贮饲料生产中的营养损失和温室气体排放,缓解全球气候变暖,促进草食畜牧业的健康绿色发展



Abstract  

Greenhouse gas (GHG) production during ensiling not only causes the nutrient losses of silage but also promotes climate warming.  However, there is little information on the production of GHG and strategies for mitigating GHG emissions during ensiling.  This work aimed to study the gas production characteristics and techniques for reducing gas emissions during ensiling.  Oats and triticale, with Lactiplantibacillus plantarum (LP) or corn meal (CM) addition, were ensiled.  The cumulative gas volume rapidly increased and reached to the peak within the first 9 d of ensiling for both forage crops.  The highest cumulative gas volume of triticale silage was twice as much as that of oats silage.  Triticale silage produced lower carbon dioxide (CO2) concentration, higher methane (CH4) and nitrous oxide (N2O) concentrations than oats silage within the 28 d of ensiling.  Adding LP or CM significantly improved the fermentation quality and decreased the gas volume and GHG concentrations of 2 silages on d 56 (except CH4 of triticale).  At the early stage of ensiling, more Enterobacter, Lactococcus and Leuconostoc related to gas production were observed, and adding LP increased the abundance of Lactobacillus and decreased the abundance of bacteria like Kosakonia, Pantoea, Enterobacter and Lactococcus positively correlated with gas volume, CO2 and N2O concentrations.  These results suggest that gas formation during ensiling mainly occurs in the first 9 d.  Adding LP or CM can significantly improve the fermentation quality and decrease the gas volume.  This would benefit to reducing GHG emissions in silage production.


Keywords:  bacterial community       ensiling        fermentation quality        greenhouse gas        oats        triticale  
Received: 25 January 2024   Accepted: 30 August 2024
Fund: 

This work was supported by the National Key R&D Program of China (2022YFE0111000-2).

About author:  Jing Tian, E-mail: 1803155313@qq.com; #Correspondence Jianguo Zhang, Tel: +86-20-38604789, E-mail: zhangjg@scau.edu.cn

Cite this article: 

Jing Tian, Rong Tian, Juanyan Wu, Liying Huang, Jianguo Zhang. 2025. Gas production characteristics of oats and tritical silages and techniques for reducing gas emissions. Journal of Integrative Agriculture, 24(4): 1246-1258.

Andrade A P, de Quadros D G, Bezerra A R G, Almeida J A R, Silva P H S, Araujo J A M. 2012. Qualitative aspects of elephantgrass silage with corn meal and soybean hulls. Semina-Ciencias Agrarias33, 1209–1218.

AOAC (Association of Official Analytical Chemists). 1990. Association of Official Analytical Chemists: Official Methods of Analysis. Association of Official Agricultural Chemists, Arlington.

Asanuma N, Hino T. 2005. Ability to utilize lactate and related enzymes of a ruminal bacterium, Selenomonas ruminantiumAnimal Science Journal76, 345–352.

Broderick G A, Kang J H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science63, 64–75.

Cai Y, Ohmomo S, Ogawa M, Kumai S. 1997. Effect of NaCl-tolerant lactic acid bacteria and NaCl on the fermentation characteristics and aerobic stability of silage. Journal of Applied Microbiology83, 307–313.

Chen D K, Zheng M Y, Guo X, Chen X Y, Zhang Q. 2021. Altering bacterial community: A possible way of lactic acid bacteria inoculants reducing CO2 production and nutrient loss during fermentation. Bioresource Technology329, 124915.

Colombini S, Zucali M, Rapetti L, Crovetto G M, Sandrucci A, Bava L. 2015. Substitution of corn silage with sorghum silages in lactating cow diets: In vivo methane emission and global warming potential of milk production. Agricultural Systems136, 106–113.

Dong Z H, Li J F, Wang S R, Dong D, Shao T. 2022. Time of day for harvest affects the fermentation parameters, bacterial community, and metabolic characteristics of sorghum-sudangrass hybrid silage. mSphere7, e00168–22.

Emery I, Mosier N. 2015. Direct emission of methane and nitrous oxide from switchgrass and corn stover: Implications for large-scale biomass storage. Global Change Biology Bioenergy7, 865–876.

Gerlach K, Schmithausen A J, Sommer A C H, Trimborn M, Büscher W, Südekum K H. 2018. Cattle diets strongly affect nitrous oxide in the rumen. Sustainability10, 3679.

Gomes A L M, Jacovaci F A, Bolson D C, Nussio L G, Jobim C C, Daniel J L P. 2019. Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic stability of oat silage. Animal Feed Science and Technology247, 194–198.

Guo X, Zheng P, Zou X, Chen X Y, Zhang Q. 2021. Influence of pyroligneous acid on fermentation parameters, CO2 production and bacterial communities of rice straw and stylo silage. Frontiers in Microbiology12, 701434.

Harper M T, Giallongo F, Roth G W, Hristov A N. 2017. Inclusion of wheat and triticale silage in the diet of lactating dairy cows. Journal of Dairy Science100, 6151–6163.

Jackson N, Forbes T J. 1970. The voluntary intake by cattle of four silages differing in dry matter content. Animal Science12, 591–599.

Jiang T, Schuchardt F, Li G, Guo R, Zhao Y. 2011. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environment Science23, 1754–1760.

Jin L, Duniere L, Lynch J P, Mcallister T A, Baah J, Wang Y. 2015. Impact of ferulic acid esterase producing Lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage. Animal Feed Science and Technology207, 62–74.

Ke W C, Wang Y, Rinne M, Franco M D, Li F H, Lin Y F, Zhang Q, Cai Y M, Zhang G J. 2024. Effects of lactic acid bacteria and molasses on the fermentation quality, in vitro dry matter digestibility, and microbial community of Korshinsk peashrub (Caragana korshinskii Kom.) silages harvested at two growth stages. Grass and Forage Science79, 56–68.

Li S N, Ke W C, Zhang Q, Undersander D, Zhang G J. 2023. Effects of Bacillus coagulans and Lactobacillus plantarum on the fermentation quality, aerobic stability and microbial community of triticale silage. Chemical and Biological Technologies in Agriculture10, 79.

Li W, Zhang J, Yang J, Zhang J, Li Z, Yang Y, Zang L. 2022. Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production. Bioresource Technology343, 126078.

Li Y. 2016. Classification of bacteria of the genus Kosakonia based on genome-wide sequence systems. MS thesis, Zhejiang Univerisity, Hangzhou. (in Chinese)

Liao C, Na B, Tang X, Zhao M, Zhang C, Chen S, You M, Bai B, Hao L, Tondrob D, Qu G, Yang S, Huang B, Gou W, Xie Y, Bai S, Chen C, Li P. 2023. Contribution of the bacterial community of poorly fermented oat silage to biogas emissions on the Qinghai Tibetan Plateau. Science of Total Environment897, 165336.

Ma J, Dai H L, Liu H C, Du W H. 2022. Effects of cutting stages and additives on the fermentation quality of triticale, rye and oat silage in Qinghai-Tibet Plateau. Agronomy-Basel12, 3113.

Ma J, Dai H L, Liu H C, Du W H. 2023. Effects of harvest stages and lactic acid bacteria additives on the nutritional quality of silage derived from triticale, rye, and oat on the Qinghai-Tibet Plateau. PeerJ11, e15772.

Macome F M, Pellikaan W F, Hendriks W H, Dijkstra J, Hatew B, Schonewille J T, Cone J W. 2017. In vitro gas and methane production of silages from whole-plant corn harvested at 4 different stages of maturity and a comparison with in vivo methane production. Journal of Dairy Science100, 8895–8905.

McDonald P, Henderson A R, Heron S J E. 1991. The Biochemistry of Silage. 2nd ed. Chalcombe Publications, Bucks, UK.

McEniry J, Forristal P D, O’Kiely P. 2011. Gas composition of baled grass silage as influenced by the amount, stretch, colour and type of plastic stretch-film used to wrap the bales, and by the frequency of bale handling. Grass and Forage Science66, 277–289.

McGarvey J A, Franco R B, Palumbo J D, Hnasko R, Stanker L, Mitloehner F M. 2013. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air. Journal of Applied Microbiology114, 1661–1670.

Meeske R, van der Merwe G D , Greyling J F, Cruywagen C W. 2002. The effect of adding an enzyme containing lactic acid bacterial inoculant to big round bale oat silage on intake, milk production and milk composition of Jersey cows. Animal Feed Science and Technology97, 159–167.

Muck R E , Nadeau E M G, McAllister T A, Contreras-Govea F E, Santos M C, Kung Jr L. 2018. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science101, 3980–4000.

Murphy R P. 1958. A method for the extraction of plant samples and the determination of total soluble carbohydrates. Journal of the Science of Food and Agriculture9, 714–717.

Myhre G, Shindell D, Bréon F M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. 2014. Anthropogenic and natural radiative forcing. In: Change I P O C. ed., Climate Change 2013–the Physical Science Basis. Cambridge University Press, Cambridge. pp. 659–740.

Okyay T O, Nguyen H N, Castro S L, Rodrigues D F. 2016. CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Science of the Total Environment572, 671–680.

Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H. 2013. Greenhouse Gas Emissions From Ruminant Supply Chains–A Global Life Cycle Assessment. Food and Agriculture Organization of the United Nations, Rome, Italy.

Pahlow G, Muck R, Driehuis F, Oude Elferink S, Spoelstra S. 2003. Microbiology of ensiling. In: Buxton D R, Muck R, Harrison J H, eds., Silage Science and Technology Agronomy. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, USA. pp. 31–93.

Patil S M, Kurade M B, Basak B, Saha S, Jang M, Kim S H, Jeon B H. 2021. Anaerobic co-digester microbiome during food waste valorization reveals Methanosaeta mediated methanogenesis with improved carbohydrate and lipid metabolism. Bioresource Technology332, 125123.

Pipyn P, Verstraete W. 1981. Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnology Bioengineering, 23, 1145–1154.

Pires F P A D, Tomich T R, Pereira, L G R, Machado F S, Campos M M, de Oliveira A F, Menezes G L, de Menezes R A, de Sousa P G, Jayme D G, Gonçalves L C. 2023. Effect of the Lactiplantibacillus plantarum and Lentilactobacillus buchneri on corn and sorghum silage quality and sheep energy partition under tropical conditions. Grass and Forage Science78, 224–235.

Rady A M S, Attia M F A, Kholif A E, Sallam S M A, Vargas-Bello-Pérez E. 2022. Improving fodder yields and nutritive value of some forage grasses as animal feeds through intercropping with egyptian clover (Trifolium alexandrinum L.). Agronomy12, 2589.

Schmithausen A J, Deeken H F, Gerlach K, Trimborn M, Weiss K, Büscher W, Maack G C. 2022. Greenhouse gas formation during the ensiling process of grass and lucerne silage. Journal of Environment Management304, 114142.

Slade E M, Riutta T, Roslin T, Tuomisto H L. 2016. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Science Report6, 18140.

van Soest P J, Mertens D R, Deinum B. 1978. Preharvest factors influencing quality of conserved forage. Journal of Animal Science47, 712–720.

van Soest P J, Robertson J B, Lewis B A, Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74, 3583–3597.

Sun L, Xue Y, Xiao Y,Te R, Wu X, Na N, Wu N, Qili M, Zhao Y, Cai Y. 2023. Community synergy of lactic acid bacteria and cleaner fermentation of oat silage prepared with a multispecies microbial inoculant. Microbiology Spectrum11, e00705–e723.

Tahir M, Li J Y, Xin Y F, Wang T W, Chen C, Zhong Y H, Zhang L, Liu H P, He Y L, Wen X J, Yan Y H. 2023. Response of fermentation quality and microbial community of oat silage to homofermentative lactic acid bacteria inoculation. Frontiers in Microbiology13, 1091394.

Tian J, Huang L Y, Tian R, Wu J Y, Tang R X, Zhang J G. 2023. Fermentation quality and bacterial community of delayed flling stylo silage in response to inoculating lactic acid bacteria strains and inoculating time. Chemical and Biological Technologies in Agriculture10, 44.

Tian R. 2023. Study on factors affecting silage gas production and its control technology. MS. thesis. South China Agricultural University, China. (in Chinese)

Wang L C, Burris R H. 1960. Toxic gases in silage, mass spectrometric study of nitrogenous gases produced by silage. Journal of Agricultural and Food Chemistry8, 239–242.

Wang R, Li C, Lv N, Pan X, Cai G, Ning J, Zhu G. 2021. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion. Bioresource Technology324, 124671.

WBA (World Bioenergy Association). 2021. Online statistical database: Global bioenergy statistics. [2022-11-02]. https://www.worldbioenergy.org/uploads/211214%20WBA%20GBS%202021.pdf

Wilkinson J M, Muck R E. 2019. Ensiling in 2050: Some challenges and opportunities. Grass and Forage Science74, 178–187.

Wu H, Meng Q, Yu Z. 2015. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in vitro rumen cultures. Bioresource Technology186, 25–33.

Yamamoto K S, Utagawa S, Kodama T, Morichi T. 1986. Isolation Method of Microorganisms. R and D Planning, Tokyo, Japan. pp. 435–444.

Yin X J, Zhao J, Wang S R, Dong Z H, Li J F, Shao T. 2022. Separating the chemical and microbial factors of oat harvested at two growth stages to determine the main factor on silage fermentation. Journal of Applied Microbiology132, 4266–4276.

Zhang L, Liu Y, Zhao R, Zhang C, Jiang W, Gu Y. 2020. Interactive regulation of formate dehydrogenase during CO2 fixation in gas-fermenting bacteria. mBio, 11, e00650–20.

Zhang X, Ke W, Ding Z, Xu D, Wang M, Chen M, Guo X. 2022. Microbial mechanisms of using feruloyl esterase-producing Lactobacillus plantarum A1 and grape pomace to improve fermentation quality and mitigate ruminal methane emission of ensiled alfalfa for cleaner animal production. Journal of Environment Management308, 114637.

Zhai Y, Pérez-Díaz I M. 2020. Contribution of Leuconostocaceae to CO2-mediated bloater defect in cucumber fermentation. Food Microbiology91, 103536.

[1] Shuting Yu, Tianshu Wang, Li Wang, Shuihong Yao, Bin Zhang. Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 739-753.
[2] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[3] Minghui Cao, Yan Duan, Minghao Li, Caiguo Tang, Wenjie Kan, Jiangye Li, Huilan Zhang, Wenling Zhong, Lifang Wu.

Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil [J]. >Journal of Integrative Agriculture, 2024, 23(2): 698-710.

[4] Mengmeng Chen, Guoli Wang, Yupeng Jing, Jie Zhou, Jiashen Song, Fangdi Chang, Ru Yu, Jing Wang, Weini Wang, Xia Sun, Hongyuan Zhang, Yuyi Li. Straw interlayer improves sunflower root growth: Evidence from moisture and salt migration and the microbial community in saline-alkali soil [J]. >Journal of Integrative Agriculture, 2024, 23(11): 3870-3881.
[5] WANG Yuan, ZHOU Hong-zhang, GAO Yu, WANG Ning-wei, LIU Han, YANG Fu-yu, NI Kui-kui. Ensiling vine tea (Ampelopsis grossedentata) residue with Lactobacillus plantarum inoculant as an animal unconventional fodder[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1172-1183.
[6] ZOU Xiao-xia, HUANG Ming-ming, LIU Yan, SI Tong, ZHANG Xiao-jun, YU Xiao-na, GUO Feng, WAN Shu-bo. Inclusion of peanut in wheat–maize rotation increases wheat yield and net return and improves soil organic carbon pool by optimizing bacterial community[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3430-3443.
[7] SONG Ya-na, CHEN Zai-jie, WU Ming-ji, LI Gang, WANG Feng. Changes in bacterial community and abundance of functional genes in paddy soil with cry1Ab transgenic rice[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1674-1686.
[8] CUI Hu, OU Yang, WANG Li-xia, YAN Bai-xing, LI Ying-xin, DING Da-wei. Phosphate rock reduces the bioavailability of heavy metals by influencing the bacterial communities during aerobic composting[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1137-1146.
[9] FU Zhi-dan, ZHOU Li, CHEN Ping, DU Qing, PANG Ting, SONG Chun, WANG Xiao-chun, LIU Wei-guo, YANG Wen-yu, YONG Tai-wen. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2006-2018.
[10] ZHOU Tao, WANG Li, DU Yong-li, LIU Ting, LI Shu-xian, GAO Yang, LIU Wei-guo, YANG Wen-yu. Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil P availability[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2230-2241.
[11] HUANG Yong-hong. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing[J]. >Journal of Integrative Agriculture, 2018, 17(2): 359-367.
[12] WEN Xin-ya, Eric Dubinsky, WU Yao, Yu Rong, CHEN Fu. Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1892-1902.
[13] PAN Pan, JIANG Hui-min, ZHANG Jian-feng, YANG Jun-cheng, LI Shu-shan, LIU Lian, ZHANG Shuiqin, LEI Mei. Shifts in soil bacterial communities induced by the controlled-release fertilizer coatings[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2855-2864.
[14] KE Xin, WANG Chun-yong, LI Run-dong , ZHANG Yun. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1373-1381.
No Suggested Reading articles found!