Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genome-wide association study of appearance quality traits and development of KASP makers in vegetable soybean

Shuo Yang1*, Qianru Jia2,4*, Qiong Wang2,4, Junyan Wang2,4, Jiahao Li3, Shengyan Hu2,4, Wei Zhang2,4, Hongmei Zhang2,4, Ya Guo3, Xin Chen4, Yuelin Zhu1#, Huatao Chen2,4#

1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

2 Zhongshan Biological Breeding Laboratory (ZSBBL), Nanjing 210014, China

3 The School of IoT (Internet of Things), Jiangnan University, Wuxi 214122, China

4 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

菜用大豆(Glycine maxL.Merr.),通常称为毛豆,是一种在豆荚结荚期(R6)收获的豆类蔬菜,在中国农业中具有重要地位。菜用大豆的外观品质对消费者的偏好和市场适销性至关重要,这些品质性状包括豆荚的长度、宽度和颜色等因素。本研究在南京、淮安和南通三地种植了264种菜用大豆,并使用PlantPhenoM(一种豆荚表型鉴定和分析系统)对豆荚性状进行了评估。结果显示,菜用大豆外观品质性状的变异范围为8.64%30.00%。通过表型数据和全基因组关联研究(GWAS),我们鉴定出了525个与不同地区外观质量性状显著相关的SNP位点。此外,还筛选出了与目标性状相关的候选基因Glyma.04G004700Glyma.15G051600Glyma.18G25700Glyma.18G225900Glyma.18G272300,并成功开发了KASP标记。本研究为培育优良的菜用大豆品种提供了宝贵的见解,并为菜用大豆外观品质性状候选基因及分子标记相关研究奠定了基础。



Abstract  
Vegetable soybean [(Glycine max (L.) Merr.], commonly referred to as edamame, holds significant agricultural importance in China as a legume vegetable harvested at the pod-filling stage (R6).  The visual appeal of vegetable soybeans, crucial for consumer preference and marketability, depends on factors such as pod length, pod width, and pod color.  This study cultivated 264 vegetable soybeans in Nanjing, Huai’an, and Nantong to assess pod traits using PlantPhenoM, a system for pod phenotypic identification and analysis.  Results revealed a variability range of 8.64 to 30.00% in appearance quality traits among vegetable soybeans.  Leveraging phenotypic data and employing a genome-wide association study (GWAS) we identified 525 SNPs significantly linked to appearance quality traits in different regions.  In addition, candidate genes (Glyma.04G004700Glyma.15G051600Glyma.18G225700Glyma.18G225900, and Glyma.18G272300) associated with target traits were identified, and KASP markers for S04_372771 (pod length), S18_51477324 (pod width), and S18_55553200 (pod color) were developed, respectively.  This research offers valuable insights for breeding superior vegetable soybean varieties and lays the groundwork for exploring candidate genes and molecular markers related to appearance and quality traits in vegetable soybeans.
Keywords:  appearance quality              genome-wide association study              KASP marker       vegetable soybean  
Received: 27 April 2024   Online: 12 September 2024  
Fund: 

This study was supported by the Zhongshan Biological Breeding Laboratory, China (ZSBBL-KY2023-03), the Jiangsu Agricultural Science and Technology Innovation Fund, China (CX(22)5002) and Project funded by China Postdoctoral Science Foundation (2023M731401).

About author:  #Correspondence Yuelin Zhu, E-mail: ylzhu@njau.edu.cn; Huatao Chen, E-mail: cht@jaas.ac.cn *These authors contributed equally to this study.

Cite this article: 

Shuo Yang, Qianru Jia, Qiong Wang, Junyan Wang, Jiahao Li, Shengyan Hu, Wei Zhang, Hongmei Zhang, Ya Guo, Xin Chen, Yuelin Zhu, Huatao Chen. 2024. Genome-wide association study of appearance quality traits and development of KASP makers in vegetable soybean. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.005

Bu Y. 2019. Identification of QTL for vegetable soybean seed hardness and preliminary functional verification of candidate gene GmMFTL. Ph D thesis, Nanjing Agricultural University in China, China. (in Chinese)

Chen Z, Zhong W, Zhou Y, Ji P, Wan Y, Shi S, Yang Z, Gong Y, Mu F, Chen S. 2022. Integrative analysis of metabolome and transcriptome reveals the improvements of seed quality in vegetable soybean (Glycine max (L.) Merr.). Phytochemistry, 200, 113216.

Dong D K, Fu X J, Yuan F J, Chen P Y, Zhu S L, Li B Q, Yang Q H, Yu X M, Zhu D H. 2014. Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genetic Resources and Crop Evolution, 61, 173–183.

Dong H, Li D, Yang R, Zhang L, Zhang Y, Liu X, Kong X, Sun J. 2023. GSK3 phosphorylates and regulates the green revolution protein Rht-B1b to reduce plant height in wheat. The Plant Cell, 35, 1970–1983.

Du J, Kirui A, Huang S, Wang L, Barnes W J, Kiemle S N, Zheng Y Z, Rui Y, Ruan M, Qi S Q, Kim S H, Wang T, Cosgrove D J, Anderson C T, Xiao C W. 2020. Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. The Plant Cell, 32, 3576–3597.

Guo L, Huang L, Cheng X, Gao Y, Zhang X, Yuan X, Xue C, Chen X. 2022. Volatile flavor profile and sensory properties of vegetable soybean. Molecules, 27, 939.

He K, Xu S, Li J. 2013. BAK1 directly regulates brassinosteroid perception and BRI1 activation. Journal of Integrative Plant Biology, 55, 1264–1270.

He Z, He L, Huang H, LI L, Zhao J. 2023. Analysis of yield and appearance quality of different vegetable soybean varieties. Heilongjiang Agricultural Sciences, 07, 7–13, 19. (in Chinese)

Hwang E Y, Song Q, Jia G, Specht J E, Hyten D L, Costa J, Cregan P B. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 15, 1–12.

Li C, Zhang B, Yu H. 2021. GSK3s: Nodes of multilayer regulation of plant development and stress responses. Trends in Plant Science, 26, 1286–1300.

Li J, Quan Y, Wang L, Wang S. 2022. Brassinosteroid promotes grape berry quality-focus on physicochemical qualities and their coordination with enzymatic and molecular processes: A review. International Journal of Molecular Sciences, 24, 445.

Li J, Wen J, Lease K A, Doke J T, Tax F E, Walker J C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110, 213–222.

Li X, Zhou Y, Bu Y, Wang X, Zhang Y, Guo N, Zhao J, Xing H. 2021. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection. Genes Genomics, 43, 897–912.

Liu X, Zhao C, Gao Y, Xu Y, Wang S, Li C, Xie Y, Chen P, Yang P, Yuan L, Wang X, Huang L, Ma F, Feng H, Guan Q. 2021. A multifaceted module of BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (BES1)-MYB88 in growth and stress tolerance of apple. Plant Physiology, 185, 1903–1923.

Lu W, Sui M, Zhao X, Jia H, Han D, Yan X, Han Y. 2022. Genome-wide identification of candidate genes underlying soluble sugar content in vegetable soybean (Glycine max L.) via association and expression analysis. Frontiers in Plant Science, 13, 930639.

Lyu J, Wang D, Duan P, Liu Y, Huang K, Zeng D, Zhang L, Dong G, Li Y, Xu R, Zhang B, Huang X, Li N, Wang Y, Qian Q, Li Y. 2020. Control of Grain Size and Weight by the GSK2-LARGE1/OML4 Pathway in Rice. The Plant Cell, 32, 1905–1918.

Patel M K, Tiwari D, Sharma V, Singh D. 2024. Assessment of genotype X environment interaction and seed yield stability in sesame (Sesamum indicum L.) using AMMI analysis. Journal of Scientific Research and Reports, 30, 63–70.

Qian L, Hickey L T, Stahl A, Werner C R, Hayes B, Snowdon R J, Voss-Fels K P. 2017. Exploring and harnessing haplotype diversity to improve yield stability in crops. Frontiers in Plant Science, 8, 1534.

Quan W, Chan Z, Wei P, Mao Y, Bartels D, Liu X. 2023. PHD finger proteins function in plant development and abiotic stress responses: An overview. Frontiers in Plant Science, 14, 1297607.

Song J F, Liu C Q, Li D J, Gu Z X. 2013. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr.). Industrial Crops and Products, 50, 743–749.

Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-Like kinase to mediate brassinosteroid responses in rice. The Plant Cell, 24, 2562–2577.

Wang X C. 2002. New varieties of vegetable soybean from Japan and their cultivation techniques. Soybean Bulletin, 6, 13.

Wang Y, Mao Z, Jiang H, Zhang Z, Wang N, Chen X. 2021. Brassinolide inhibits flavonoid biosynthesis and red-flesh coloration via the MdBEH2.2-MdMYB60 complex in apple. Journal of Experimental Botany, 72, 6382–6399.

Williams M M. 2015. Phenomorphological characterization of vegetable soybean germplasm lines for commercial production. Crop Science, 55, 1274.

Xu N, Rong Y, Li J, Fu Y, Mei H. 2017. Evaluation of upland cotton yield stability and adaptability using GGE-biplot analysis: A case study of 'Ezamian 30' cotton cultivar in Yangtze River Valley. Chinese Journal of Eco-Agriculture, 25, 884–892. (in Chinese)

Xu W, Liu H, Li S, Zhang W, Wang Q, Zhang H, Liu X, Cui X, Chen X, Tang W, Li Y, Zhu Y, Chen H. 2022. GWAS and identification of candidate genes associated with seed soluble sugar content in vegetable soybean. Agronomy, 12, 1470. 

Xu X, Guo C, Ma C, Li M, Chen Y, Liu C, Chu J, Yao X. 2022. Brassinolide soaking reduced nitrite content and extended color change and storage time of toona sinensis bud during low temperature and near freezing-point temperature storage. International Journal of Molecular Sciences, 23, 13110.

Xue J, Guo C, Shen Y, Li M, Chu J, Yao X. 2021. Brassinolide soaking and preharvest UV-B radiation influence the shelf life of small black bean sprouts. Food Chemistry, 352, 129322.

Yang J, Shen Y, Cai X, Wu S, Li J, S M, Jia B, Sun X. 2019. Genome-wide identification and expression patterns analysis of the PHD family protein in Glycine max. Crops, 03, 55–65. (in Chinese)

Zatybekov A, Abugalieva S, Didorenko S, Gerasimova Y, Sidorik I, Anuarbek S, Turuspekov Y. 2017. GWAS of agronomic traits in soybean collection included in breeding pool in Kazakhstan. BMC Plant Biology, 17, 1–8.

Zhang H, Xiong Y, Xu W, Zhang W, Wang Q, Liu X, Liu H, Cui X, Chen X, Chen H. 2023. Genome-wide association study for amino acid content at R6 stage in soybean (Glycine max L.) seed. Acta Agronomica Sinic, 49, 3277–3288. (in Chinese)

Zhang L, Yuan L, Xiang J, Liao Q, Zhang DYin D, Dong Q. 2023. Nutritional evaluation and regional difference of vegetable soybean protein in Jiangxi Province. Soybean Science42, 138–146. (in Chinese)

Zhang W, Xu W, Zhang H, Liu X, Cui X, Li S, Zhu Y, Chen X, Chen H. 2021. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theoretical and Applied Genetics, 134, 1329–1341.

Zhang X, Xie B, Zhu Y, Zheng K, Gu Q. 2022. High-throughput phenotype collection and analysis of vegetable soybean pod based on image processing technology. Journal of Agricultural Sciences, 36, 0602–0612. (in Chinese) 

Zhang Y, Hu R, Lin G. 2013. Research advance on quality traits of vegetable soybean. Soybean Science, 32, 698–702. (in Chinese)

Zhang X, Meng W, Liu D, Pan D, Yang Y, Chen Z, Ma X, Yin W, Niu M, Dong N, Liu J, Shen W, Liu Y, Lu Z, Chu C, Qian Q, Zhao M, Tong H. 2024. Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition. Science, 383, eadk8838.

Zhu J, Giri K, Cogan N O, Smith K F, Jacobs J L. 2023. Genotype-by-environment interaction analysis of dry matter yield of perennial ryegrass cultivars across south-eastern Australia using factor analytic models. Field Crops Research, 303, 109143.

[1] Yuan Gao, Fuxia Bai, Qi Zhang, Xiaoya An, Zhaofei Wang, Chuzhao Lei, Ruihua Dang. Dynamic transcriptome profiles and novel markers in bovine spermatogenesis revealed by single-cell sequencing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2362-2378.
[2] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[3] Liyao Su, Min Wu, Tian Zhang, Yan Zhong, Zongming (Max) Cheng.

Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics [J]. >Journal of Integrative Agriculture, 2024, 23(3): 876-887.

[4] Mosses Lufuke, Xu Tian.

Women’s empowerment and food consumption: Evidence from female-headed households in Tanzania [J]. >Journal of Integrative Agriculture, 2024, 23(2): 457-467.

[5] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[6] ZHUANG Hui, LAN Jin-song, YANG Qiu-ni, ZHAO Xiao-yu, LI Yu-huan, ZHI Jing-ya, SHEN Ya-lin, HE Guang-hua, LI Yun-feng. SUPER WOMAN 2 (SPW2) maintains organ identity in spikelets by inhibiting the expression of floral homeotic genes OsMADS3, OsMADS58, OsMADS13, and DROOPING LEAF[J]. >Journal of Integrative Agriculture, 2024, 23(1): 59-76.
[7] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[8] SONG Jin-xing, WANG Meng-xiang, ZHANG Yi-xuan, WAN Bo, DU Yong-kun, ZHUANG Guo-qing, LI Zi-bin, QIAO Song-lin, GENG Rui, WU Ya-nan, ZHANG Gai-ping. Identification and epitope mapping of anti-p72 single-chain antibody against African swine fever virus based on phage display antibody library[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2834-2847.
[9] WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei. A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2000-2014.
[10] GAO Yue, LUO Jian, SUN Yue, ZHANG Hua-wei, ZHANG Da-xia, LIU Feng, MU Wei, LI Bei-xing. Photosensitivity and a precise combination of size-dependent lambda-cyhalothrin microcapsules synergistically generate better insecticidal efficacy [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1477-1488.
[11] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[12] WANG Fei-bing, WAN Chen-zhong, NIU Hao-fei, QI Ming-yang, LI Gang, ZHANG Fan, HU Lai-bao, YE Yu-xiu, WANG Zun-xin, PEI Bao-lei, CHEN Xin-hong, YUAN Cai-yuan.

OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice [J]. >Journal of Integrative Agriculture, 2023, 22(2): 341-359.

[13] PAN Fan, GAO Li-jie, ZHU Kai-hui, DU Gui-lin, ZHU Meng-meng, ZHAO Li, GAO Yu-lin, TU Xiong-bing, ZHANG Ze-hua. Regional selection of insecticides and fungal biopesticides to control aphids and thrips and improve the forage quality of alfalfa crops[J]. >Journal of Integrative Agriculture, 2023, 22(1): 185-194.
[14] ZHANG Yu-zheng, XU Chen, LU Wen-li, WANG Xiao-zhe, WANG Ning, MENG Xiang-guang, FANG Yu-hui, TAN Qiu-ping, CHEN Xiu-de, FU Xi-ling, LI Ling.

PpMAPK6 regulates peach bud endodormancy release through interactions with PpDAM6 [J]. >Journal of Integrative Agriculture, 2023, 22(1): 139-148.

[15] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
No Suggested Reading articles found!