Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2834-2847    DOI: 10.1016/j.jia.2023.07.039
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and epitope mapping of anti-p72 single-chain antibody against African swine fever virus based on phage display antibody library

SONG Jin-xing1, 2, WANG Meng-xiang1, 2, ZHANG Yi-xuan1, 2, WAN Bo1, 2, DU Yong-kun1, 2, ZHUANG Guo-qing1, 2, LI Zi-bin3, QIAO Song-lin6, GENG Rui1, WU Ya-nan1, 2#, ZHANG Gai-ping1, 2, 4, 5# 

1 College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P.R.China

2 International Joint Research Center of National Animal Immunology, Zhengzhou 450046, P.R.China

3 College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, P.R.China

4 Longhu Laboratory, Zhengzhou 450046, P.R.China

5 School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R.China

6 Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

非洲猪瘟病毒(ASFV)是一种致命的病原体,对全球养猪业造成灾难性的社会经济影响。到目前为止,还没有获得许可的预防性疫苗。目前对非洲猪瘟病毒主要免疫原和关键抗原表位图谱的了解有限。因此,功能性单克隆抗体(mAb)和表位图谱的研究对我们理解免疫反应和设计改进的疫苗、治疗和诊断至关重要。本研究基于自然感染ASFV的康复期PBMCs构建的ASFV抗体噬菌体展示文库,筛选出一株抗ASFV主要衣壳蛋白(p72)单链抗体,并与IgG Fc片段融合(scFv-83-Fc),可以特异性识别ASFV Pig/HLJ/2018毒株。进一步,使用scFv-83-Fc单克隆抗体为靶点,我们从M13噬菌体展示随机肽库中鉴定到p72的一段保守表位肽(221MTGYKH226)。此外,流式细胞术和细胞摄取实验表明,该表位肽在体外能显著促进BMDC成熟,并能被DC细胞有效摄取,这可能意味着其在疫苗和诊断试剂开发中的潜在应用前景。总之,本研究为确定ASFV疫苗开发的靶点提供了一个有价值的平台,并有助于亚单位疫苗和诊断试剂的优化设计。



Abstract  

African swine fever virus (ASFV) is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.  To date, no licensed prophylactic vaccine exists.  Limited knowledge exists about the major immunogens of ASFV and the epitope mapping of the key antigens.  As such, there is a considerable requirement to understand the functional monoclonal antibodies (mAbs) and the epitope mapping may be of utmost importance in our understanding of immune responses and designing improved vaccines, therapeutics, and diagnostics.  In this study, we generated an ASFV antibody phage-display library from ASFV convalescent swine PBMCs, further screened a specific ASFV major capsid protein (p72) single-chain antibody and fused with an IgG Fc fragment (scFv-83-Fc), which is a specific recognition antibody against ASFV Pig/HLJ/2018 strain.  Using the scFv-83-Fc mAb, we selected a conserved epitope peptide (221MTGYKH226) of p72 retrieved from a phage-displayed random peptide library.  Moreover, flow cytometry and cell uptake experiments demonstrated that the epitope peptide can significantly promote BMDCs maturation in vitro and could be effectively uptaken by DCs, which indicated its potential application in vaccine and diagnostic reagent development.  Overall, this study provided a valuable platform for identifying targets for ASFV vaccine development, as well as to facilitate the optimization design of subunit vaccine and diagnostic reagents

Keywords:  ASFV        phage display antibody library        single chain antibody        p72        epitope  
Received: 29 April 2023   Accepted: 19 June 2023
Fund: This work was supported by the National Natural Science Foundation of China (31941001 and 32002292), the Major Science and Technology Project of Henan Province, China (221100110600) and the Natural Science Foundation of Henan Province (202300410199). 
About author:  SONG Jin-xing, Tel: +86-371-56990163, E-mail: 1010746220@qq.com; #Correspondence WU Ya-nan, E-mail: wlyananjiayou@yeah.net; ZHANG Gai-ping, E-mail: zhanggaip@126.com

Cite this article: 

SONG Jin-xing, WANG Meng-xiang, ZHANG Yi-xuan, WAN Bo, DU Yong-kun, ZHUANG Guo-qing, LI Zi-bin, QIAO Song-lin, GENG Rui, WU Ya-nan, ZHANG Gai-ping. 2023. Identification and epitope mapping of anti-p72 single-chain antibody against African swine fever virus based on phage display antibody library. Journal of Integrative Agriculture, 22(9): 2834-2847.

Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat S, Mahboudi F, Rahimi-Jamnani F J M. 2019. Single-chain variable fragment-based bispecific antibodies: Hitting two targets with one sophisticated arrow. Molecular Therapy-Oncolytics14, 38–56.

Arias M, de la Torre A, Dixon L, Gallardo C, Jori F, Laddomada A, Martins C, Parkhouse R M, Revilla Y, Rodriguez F, Jose M, Sanchez V. 2017. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines5, 35.

Belabed M, Mauvais F X, Maschalidi S, Kurowska M, Goudin N, Huang J D, Fischer A, de Saint Basile G, Endert P, Sepulveda F E, Ménasché G. 2020. Kinesin-1 regulates antigen cross-presentation through the scission of tubulations from early endosomes in dendritic cells. Nature Communications11, 1817.

Bradbury A R, Sidhu S, Dubel S, McCafferty J. 2011. Beyond natural antibodies: The power of in vitro display technologies. Nature Biotechnology29, 245–254.

Brähler S, Zinselmeyer B H, Raju S, Nitschke M, Suleiman H, Saunders B T, Johnson M W, Böhner A M C, Viehmann S F, Theisen D J, Kretzer N M, Briseño C G, Zaitsev K, Ornatsky O, Chang Q, Carrero J A, Kopp J B, Artyomov M N, Kurts C, Murphy K M, et al. 2018. Opposing roles of dendritic cell subsets in experimental GN. Journal of the American Society of Nephrology29, 138–154.

Chapman D A G, Tcherepanov V, Upton C, Dixon L K. 2008. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. Journal of General Virology89, 397–408.

Dixon L K, Stahl K, Jori F, Vial L, Pfeiffer D U. 2020. African swine fever epidemiology and control. Annual Review of Animal Biosciences8, 221–246.

Dixon L K, Sun H, Roberts H. 2019. African swine fever. Antiviral Research165, 34–41.

Escribano J, Galindo I, Alonso C J V. 2013. Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Research173, 101–109.

Geng R, Sun Y, Li R, Yang J, Ma H, Qiao Z, Lu Q, Qiao S, Zhang G. 2022. Development of a p72 trimer-based colloidal gold strip for detection of antibodies against African swine fever virus. Applied Microbiology and Biotechnology106, 2703–2714.

Glockshuber R, Malia M, Pfitzinger I, Plückthun A J B. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry29, 1362–1367.

Gómez-Puertas P, Rodríguez F, Oviedo J, Ramiro-Ibáñez F, Ruiz-Gonzalvo F, Alonso C, Escribano J J J. 1996. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Virology Journal70, 5689–5694.

Heimerman M, Murgia M, Wu P, Lowe A, Jia W, Rowland R J J. 2018. Linear epitopes in African swine fever virus p72 recognized by monoclonal antibodies prepared against baculovirus-expressed antigen. Journal of Veterinary Diagnostic Investigation30, 406–412.

Holliger P, Hudson P J. 2005. Engineered antibody fragments and the rise of single domains. Nature Biotechnology23, 1126–1136.

Iyer L M, Aravind L, Koonin E V. 2001. Common origin of four diverse families of large eukaryotic DNA viruses. Virology Journal75, 11720–11734.

Iyer L M, Balaji S, Koonin E V, Aravind L. 2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Research117, 156–184.

Jia N, Ou Y, Pejsak Z, Zhang Y, Zhang J. 2017. Roles of African swine fever virus structural proteins in viral infection. Journal of Veterinary Research61, 135–143.

Ledsgaard L, Ljungars A, Rimbault C, Sorensen C V, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen A H. 2022. Advances in antibody phage display technology. Drug Discovery Today27, 2151–2169.

Li K, Zettlitz K, Lipianskaya J, Zhou Y, Marks J, Mallick P, Reiter R, Wu A J P. 2015. A fully human scFv phage display library for rapid antibody fragment reformatting. Protein Engineering Design & Selection28, 307–316.

Liu F, Guan Z, Liu Y, Li J, Liu C, Gao Y, Ma Y, Feng J, Shen B, Yang G. 2021. Identification of a human anti-alpha-toxin monoclonal antibody against Staphylococcus aureus infection. Frontiers in Microbiology12, 692279.

Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, et al. 2019. Cryo-EM structure of the African swine fever virus. Cell Host Microbe26, 836–843.

Neilan J G, Zsak L, Lu Z, Burrage T G, Kutish G F, Rock D L. 2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology319, 337–342.

Onisk D V, Kutish G, Kramer E, Irusta P, Rock D L. 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology198, 350–354.

Pan Y, Du J, Liu J, Wu H, Gui F, Zhang N, Deng X, Song G, Li Y, Lu J, Wu X, Zhan S, Jing Z, Wang J, Yang Y, Liu J, Chen Y, Chen Q, Zhang H, Hu H, et al. 2021. Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discovery7, 57.

Revilla Y, Perez-Nunez D, Richt J A. 2018. African swine fever virus biology and vaccine approaches. Advances in Virus Research100, 41–74.

Sanchez E G, Perez-Nunez D, Revilla Y. 2017. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines5, 42.

Sánchez-Cordón P, Montoya M, Reis A, Dixon L J V. 2018. African swine fever: A re-emerging viral disease threatening the global pig industry. Veterinary Journal233, 41–48.

Sheedy C, MacKenzie C, Hall J J. 2007. Isolation and affinity maturation of hapten-specific antibodies. Biotechnology Advances25, 333–352.

Song J, Wang M, Du Y, Wan B, Zhang A, Zhang Y, Zhuang G, Ji P, Wu Y, Zhang G. 2023. Identification of a linear B-cell epitope on the African swine fever virus CD2v protein. International Journal of Biological Macromolecules232, 123264.

Stefan M A, Light Y K, Schwedler J L, McIlroy P R, Courtney C M, Saada E A, Thatcher C E, Phillips A M, Bourguet F A, Mageeney C M, McCloy S A, Collette N M, Negrete O A, Schoeniger J S, Weilhammer D R, Harmon B. 2021. Development of potent and effective synthetic SARS-CoV-2 neutralizing nanobodies. mAbs13, 1958663.

Wang L, Luo Y, Zhao Y, Gao G, Bi Y, Qiu H J T. 2020. Comparative genomic analysis reveals an ‘open’ pan-genome of African swine fever virus. Transboundary and Emerging Diseases67, 1553–1562.

Wang N, Zhao D, Wang J, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z, Wang X. 2019. Architecture of African swine fever virus and implications for viral assembly. Science2019, 640–644.

Weisser N, Hall J J B. 2009. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnology Advances27, 502–520.

Wen X, He X, Zhang X, Zhang X, Liu L, Guan Y, Zhang Y, Bu Z. 2019. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerging Microbes & Infections8, 303–306.

No related articles found!
No Suggested Reading articles found!