Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 754-768    DOI: 10.1016/j.jia.2024.06.019
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Anaerobic soil disinfestation rather than Bacillus velezensis Y6 inoculant suppresses tomato bacterial wilt by improving soil quality and manipulating bacterial communities
Taowen Pan1, 2, 3, Yulin Chen1, 2, 3, Sicong Li1, 2, 3, Lei Wang1, 2, 3, Joji Muramoto4, Carol Shennan4, Jihui Tian1, 2, 3, Kunzheng Cai1, 2, 3#

1 Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China

2 Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China

3 College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

4 Environmental Studies, University of California Santa Cruz, Santa Cruz, CA 95064, United States

 Highlights 
Anaerobic soil disinfestation (ASD) is an effective strategy to inhibit the occurrence of bacterial wilt.
ASD improves soil quality and promotes the colonization of beneficial flora.
ASD contributes to the improvement of bacterial community stability.
The changes in soil bacterial community are mainly affected by ASD treatment.
Soil pH is positively correlated with pathogens suppression.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

连作导致了土传病害的发生例如由青枯菌引起的青枯病,这给农业发展带来风险土壤厌氧消毒(ASD)和植物根际促生菌PGPR的施用被认为是控制青枯病的环境友好方法然而,ASD处理和PGPR接种后对改善土壤健康和抑制青枯病的潜在机制仍需要进一步探索本研究评价ASD处理对番茄种植前土壤改良的效果,以及ASD处理联合施用贝莱斯芽孢杆菌Y6BV)对番茄收获前90土壤质量、青枯菌丰度和细菌群落的影响结果表明,ASD处理使土壤中青枯菌的丰度在种植前降低17.6%,在收获前90天降低18.7%,但BV处理对此没有影响。在收获前90天,ASDASD+BV处理有效降低青枯病的发生,改善土壤养分状况,并提高土壤微生物活性。主坐标分析表明,ASD处理显著影响土壤细菌群落结构在种植前和收获前90天。进一步研究发现,ASD处理有助于有益菌群(芽孢杆菌和链霉菌)的富集。此外,pH是影响土壤中青枯菌丰度的重要环境因子。有趣的是,共发生网络分析表明,ASD处理显著增加正相关关联和有益微生物(变形菌门和厚壁菌门)的比例,提高种植前和收获前90天的土壤细菌共发生网络复杂性总之,这些结果表明,ASD处理而非微生物接种可以通过改善土壤质量和调控土壤细菌群落来增强番茄植株对青枯病的抗性




Abstract  
Continuous cropping leads to high incidence of soilborne diseases such as bacterial wilt caused by Ralstonia solanacearum, which poses a risk to agricultural production.  Anaerobic soil disinfestation (ASD) and plant growth-promoting rhizobacteria (PGPR) are considered environmentally friendly methods to control bacterial wilt.  However, the underlying mechanism of the improvement of soil health and the inhibition of bacterial wilt after ASD treatment and PGPR inoculation needs further exploration.  This study evaluated the effect of ASD treatment on soil improvement at pre-planting of tomato, and the effect of ASD treatment combined with the application of Bacillus velezensis Y6 (BV) on soil quality, Rsolanacearum abundance, and bacterial communities at 90 days before harvesting of tomato.  The results showed that ASD treatment reduced Rsolanacearum abundance in soil by 17.6% at pre-planting and 18.7% at 90 days before harvesting, but BV inoculation did not influence R. solanacearum abundance.  ASD and ASD+BV treatments effectively reduced the occurrence of bacterial wilt, improved soil nutrient status and increased soil microbial activity at 90 days before harvesting.  Principal co-ordinate analysis showed that the soil bacterial community was significantly influenced by ASD treatment both at pre-planting and at 90 days before harvesting.  Further investigation found that ASD contributed to the enrichment of beneficial flora (Bacillus and Streptomyces).  Moreover, pH was an important environmental factor affecting the abundance of Rsolanacearum in soil.  Co-occurrence network analysis showed that ASD treatment significantly increased network connection of bacterial communities and the proportion of beneficial microorganisms (Proteobacteria and Firmicutes), leading to complex soil bacterial co-occurrence networks both at pre-planting and at 90 days before harvesting.  Collectively, these results indicate that ASD treatment, but not microbial inoculation can enhance tomato plant resistance to bacterial wilt by improving soil quality and modulating the soil bacterial community.
Keywords:  Ralstonia solanacearum       plant growth-promoting rhizobacteria        anaerobic soil disinfestation        soil quality        soil microorganisms  
Received: 18 March 2024   Accepted: 06 May 2024
Fund: This study was supported by the National Natural Science Foundation of China (31870420), and the Science and Technology Program of Guangdong Province, China (2121A0505030057).
About author:  Taowen Pan, Mobile: +86-17728109913, E-mail: pantaowen123@126.com; #Correspondence Kunzheng Cai, Mobile: +86-13672408736, E-mail: kzcai@scau.edu.cn

Cite this article: 

Taowen Pan, Yulin Chen, Sicong Li, Lei Wang, Joji Muramoto, Carol Shennan, Jihui Tian, Kunzheng Cai. 2025. Anaerobic soil disinfestation rather than Bacillus velezensis Y6 inoculant suppresses tomato bacterial wilt by improving soil quality and manipulating bacterial communities. Journal of Integrative Agriculture, 24(2): 754-768.

Ali A, Elrys A, Liu L L, Xia Q, Wang B Y, Li Y L, Dan X Q, Iqbal M, Zhao J, Huang X Q, Cai Z C. 2022. Deciphering the synergies of reductive soil disinfestation combined with biochar and antagonistic microbial inoculation in cucumber Fusarium wilt suppression through rhizosphere microbiota structure. Microbial Ecology85, 980–997.

Bakker P, Pieterse C M J, de Jonge R, Berendsen R L. 2018. The soil-borne legacy. Cell172, 1178–1180.

Banerjee S, Kirkby C A, Schmutter D, Bissett A, Kirkegaard J A, Richardson A E. 2016. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology Biochemistry97, 188–198.

Bao S D. 2006. Soil Agricultural Chemical Analysis. 3rd ed. Agriculture Press, Beijing. (in Chinese)

Butler D M, Kokalis-Burelle N, Albano J P, Mccollum T G, Muramoto J, Shennan C, Rosskopf E N. 2014. Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: Vegetable crop performance and soil nutrient dynamics. Plant and Soil378, 365–381.

Cao Y, Pi H L, Chandrangsu P, Li Y T, Wang Y Q, Zhou H, Xiong H Q, Helmann J D, Cai Y F. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporumScientific Reports8, 4360.

Chen S, Qi G F, Luo T, Zhang H C, Jiang Q K, Wang R, Zhao X Y. 2018. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land Degradation & Development29, 4106–4120.

Cheng H Y, Zhang D Q, Ren L R, Song Z X, Li Q J, Wu J J, Fang W S, Huang B, Yan D D, Li Y, Wang Q X, Cao A C. 2021. Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield. Environmental Pollution283, 117160.

Choudhary D K, Nabi S U, Dar M S, Khan K A. 2018. Ralstonia solanacearum: A wide spread and global bacterial plant wilt pathogen. Journal of Pharmacognosy and Phytochemistry7, 85–90.

Deng X H, Zhang N, Shen Z Z, Zhu C Z, Liu H J, Xu Z H, Li R, Shen Q R, Salles J F. 2021. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporumNPJ Biofilms and Microbiomes7, 33.

Dong M H, Zhao M L, Shen Z Z, Deng X H, Ou Y N, Tao C Y, Liu H J, Li R, Shen Q R. 2020. Biofertilizer application triggered microbial assembly in microaggregates associated with tomato bacterial wilt suppression. Biology and Fertility of Soils56, 551–563.

Ge A H, Liang Z H, Xiao J L, Zhang Y, Zeng Q, Xiong C, Han L L, Wang J T, Zhang L M. 2021. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture Ecosystems & Environment312, 107336.

Ghorbani R, Wilcockson S, Koocheki A, Leifert C. 2008. Soil management for sustainable crop disease control: A review. Environmental Chemistry Letters6, 149–162.

Goldford J E, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segrè D, Mehta P. 2018. Emergent simplicity in microbial community assembly. Science361, 469–474.

Guo H, Di Gioia F D, Zhao X, Ozores-Hampton M, Swisher M E, Hong J, Kokalis-Burelle N, DeLong A N, Rosskopf E N. 2017a. Optimizing anaerobic soil disinfestation for fresh market tomato production: Nematode and weed control, yield, and fruit quality. Scientia Horticulturae218, 105–116.

Guo M J, Wu F H, Hao G G, Qi Q, Li R, Li N, Wei L M, Chai T J. 2017b. Bacillus subtilis improves immunity and disease resistance in rabbits. Frontiers in Immunology8, 354.

Hayatsu M, Tago K, Saito M. 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition54, 33–45.

Hewavitharana S S, Reed A J, Leisso R, Poirier B, Honaas L, Rudell D R, Mazzola M. 2019. Temporal dynamics of the soil metabolome and microbiome during simulated anaerobic soil disinfestation. Frontiers in Microbiology10, 2365.

Huang X Q, Liu L L, Teng W, Zhang J B, Wang F H, Cai Z C. 2016. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Applied Microbiology and Biotechnology100, 5581–5593.

Huang X Q, Zhao J, Zhou X, Zhang J B, Cai Z C. 2019a. Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma348, 124–134.

Huang X Q, Zhou X, Zhang J B, Cai Z C. 2019b. Highly connected taxa located in the microbial network are prevalent in the rhizosphere soil of healthy plant. Biology and Fertility of Soils55, 299–312.

Jiang G F, Wei Z, Xu J, Chen H L, Zhang Y, She X M, Macho A P, Ding W, Liao B S. 2017. Bacterial wilt in China: History, current status, and future perspectives. Frontiers in Plant Science8, 1549.

Jin X, Bai Y, Rahman M K U, Kang X J, Pan K, Wu F Z, Pommier T, Zhou X G, Wei Z. 2022. Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against Fusarium wilt. iMeta1, e37.

Jorge-Mardomingo I, Soler-Rovira P, Casermeiro M Á, Cruz M T, Polo A. 2013. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma206, 40–48.

Li B, Li Q, Xu Z H, Zhang N, Shen Q R, Zhang R F. 2014. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Frontiers in Microbiology5, 636.

Li C J, Ahmed W, Li D F, Yu L J, Xu L, Xu T Y, Zhao Z X. 2022. Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms. Applied Soil Ecology171, 104314.

Ma B, Wang H Z, Dsouza M, Lou J, He Y, Dai Z M, Brookes P C, Xu J M, Gilbert J A. 2015. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal10, 1891–1901.

Mallon C A, Elsas J D V, Salles J F. 2015. Microbial invasions: The process, patterns, and mechanisms. Trends in Microbiology23, 719–729.

Mao Y H, Hafeez A, Pan TW, Wu C R, Wang L, Muramoto J, Shennan C, Cai K Z, Tian J H. 2022. Suppression of tomato bacterial wilt by anaerobic soil disinfestation and associations with production of antagonistic compounds. Plant and Soil477, 1–14.

Mazzola M, Muramoto J, Shennan C. 2018. Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California feld trials. Applied Soil Ecology127, 74–86.

Messiha N A S, van Bruggen A H C, Franz E, Janse J D, Schoeman-Weerdesteijn M E, Termorshuizen A J, van Diepeningen A D. 2009. Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearumApplied Soil Ecology43, 206–215.

Momma N. 2015. Studies on mechanisms of anaerobicity-mediated biological soil disinfestation and its practical application. Journal of General Plant Pathology81, 480–482.

Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A. 2013. Development of biological soil disinfestations in Japan. Applied Microbiology and Biotechnology97, 3801–3809.

Mowlick S, Inoue T, Takehara T, Tonouchi A, Kaku N, Ueki K, Ueki A. 2014. Usefulness of Japanese-radish residue in biological soil disinfestation to suppress spinach wilt disease accompanying with proliferation of soil bacteria in the FirmicutesCrop Protection61, 64–73.

Page K, Dang Y, Dalal R. 2013. Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems. Australasian Plant Pathology42, 363–377.

Paudel B R, Gioia F D, Zhao X, Ozores-Hampton M, Hong J C, Kokalis-Burelle N, Pisani C, Rosskopf E N. 2018. Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renewable Agriculture and Food Systems35, 274–285.

Pu R F, W P P, Guo L P, Li M H, Cui X M, Wang C X, Liu Y, Yang Y. 2022. The remediation effects of microbial organic fertilizer on soil microorganisms after chloropicrin fumigation. Ecotoxicology and Environmental Safety231, 113188.

Schönfeld J, Heuer H, Van Elsas J D, Smalla K. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Applied and Environmental Microbiology69, 7248–7256.

Segura R A, Stoorvogel J J, Sandoval J A. 2022. The effect of soil properties on the relation between soil management and Fusarium wilt expression in Gros Michel bananas. Plant and Soil471, 89–100.

Semenov M V, Krasnov G S, Semenov V M, van Bruggen A H C. 2020. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Applied Soil Ecology154, 103641.

Shafique H A, Sultana V, Ehteshamul-Haque S, Athar M. 2016. Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research56, 221–230.

Shen Z Z, Ruan Y Z, Xue C, Zhong S T, Li R, Shen Q R. 2015. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant and Soil393, 21–33.

Shennan C, Muramoto J, Koike S, Baird G, Fennimore S, Samtani J, Bolda M, Dara S, Daugovish O, Lazarovits G, Butler D M, Rosskopf E, Kokalis-Burelle N, Klonsky K, Mazzola M. 2018. Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. Plant Pathology67, 51–66.

Shi S J, Nuccio E E, Shi Z J, He Z L, Zhou J Z, Firestone M K. 2016. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters19, 926–936.

Shrestha U, Dee M E, Piya S, Ownley B H, Butler D M. 2020. Soil inoculation with Trichoderma asperellumTharzianum or Streptomyces griseoviridis prior to anaerobic soil disinfestation (ASD) does not increase ASD efcacy against Sclerotium rolfsii germination. Applied Soil Ecology147, 103383.

Tao H, Wang S S, Li X B, Cai J Y, Zhao LF, Wang J, Zeng J, Qin Y Z, Xiong X Y, Cai Y F. 2023. Biological control of potato common scab and growth promotion of potato by Bacillus velezensis Y6. Frontiers in Microbiology14, 1295107.

Testen A L, Miller S A. 2018. Carbon source and soil origin shape soil microbiomes and tomato soilborne pathogen populations during anaerobic soil disinfestation. Phytobiomes Journal2, 138–150.

Tian J H, Kuang X Z, Tang M T, Chen X D, Huang F, Cai Y X, Cai K Z. 2021. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Science of the Total Environment779, 146556.

Wang Y F, Ma Z T, Wang X W, Sun Q R, Dong H Q, Wang G S, Chen X S, Yin C M, Han Z H, Mao Z Q. 2019. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Scientia Horticulturae256, 108641.

Weller D M, Raaijmakers J M, Gardener B B, Thomashow L S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology40, 309–348.

Wei Z, Hu J, Gu Y A, Yin S X, Xu Y C, Jousset A, Shen Q R, Friman V P. 2018. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biology Biochemistry118, 8–17.

Xiong W, Li R, Ren Y, Liu C, Zhao Q Y, Wu H S, Jousset A, Shen Q R. 2017. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biology Biochemistry107, 198–207.

Xue C, Shen Z Z, Hao Y W, Yu S T, Li Y C, Huang W J, Chong Y, Ran W, Li R, Shen Q R. 2019. Fumigation coupled with bio-organic fertilizer for the suppression of watermelon Fusarium wilt disease re-shapes the soil microbiome. Applied Soil Ecology140, 49–56.

Xue R, Wang C, Zhao L, Sun B R, Wang B L. 2022. Agricultural intensifcation weakens the soil health index and stability of microbial networks. Agriculture Ecosystems & Environment339, 108118.

Yakabe L E, Parker S R, Kluepfel D A. 2010. Effect of pre-plant soil fumigants on Agrobacterium tumefaciens, pythiaceous species, and subsequent soil recolonization by AtumefaciensCrop Protection29, 583–590.

Yan J, Quan G, Ding C. 2013. Effects of the combined pollution of lead and cadmium on soil urease activity and nitrifcation.Procedia Environmental Sciences18, 78–83.

Yan Y C, Xu W H, Hu Y L, Tian R M, Wang Z G. 2022. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt. Biological Control172, 104977.

Zhang H Q, Zheng X Q, Wang X T, Xiang W, Xiao M L, Wei L, Zhang Y, Song K, Zhao Z, Lv W G, Chen J P, Ge T D. 2022. Effect of fertilization regimes on continuous cropping growth constraints in watermelon is associated with abundance of key ecological clusters in the rhizosphere. Agriculture Ecosystems & Environment339, 108135.

Zhao J, Mei Z, Zhang X, Xue C, Zhang C Z, Ma T F, Zhang S S. 2017. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field. Scientific Reports7, 43103.

Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. 2016. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Applied Soil Ecology99, 1–12.

Zhu T B, Zhang J B, Yang W Y, Cai Z C. 2013. Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biology and Fertility of Soils49, 153–163.

Zhu W J, Lu X L, Hong C L, Hong L D, Ding J, Zhou W L, Zhu F X, Yao Y L. 2023. Pathogen resistance in soils associated with bacteriome network reconstruction through reductive soil disinfestation. Applied Microbiology and Biotechnology107, 5829–5842.

No related articles found!
No Suggested Reading articles found!